电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

波束指向性和半扩散角0806VIP免费

波束指向性和半扩散角0806_第1页
1/6
波束指向性和半扩散角0806_第2页
2/6
波束指向性和半扩散角0806_第3页
3/6
波束指向性和半扩散角至波源充分远处任一点的声压如下图所示:点波源ds在至波源距离充分远处任意一点M(r,θ)处引起的声压为:波源前充分远处任意一点的声压P(r,θ)与波源轴线上同距离处声压P(r,0)之比,称为指向性系数,用DC表示.DC与y的关系如下图:从图可知:(1)这说明超声场中至波源充分远处同一横截面上各点的声压是不同的,以轴线上的声压为最高.(2)当y=kRssinθ=3.83,7.02,10.17,……时,DC=0.这说明圆盘源辐射的纵波声场中存在一些声压为零的圆锥面.由y=kRssinθo=3.83得:式中:θo—圆盘源辐射的纵波声场的第一零值发散角,又称半扩散角,指向角。此外,对应于y=7.02,10.17……的发散角称为第二、三……零值发散角。(3)当y>3.83,即θ>θo时,│DC│<0.15。这说明半扩散角θo以外的声场声压很低,超声波的能量最主要集中在半扩散角θo以内。因此可以认为半扩散角限制了波束的范围。2θo以内的波束称为主波束,只有当缺陷位于主波束范围内,才容易被发现。以确定的扩散角向固定方向辐射超声波的特性称为波束指向性。由于超声波主波束以外的能量很低和介质对超声波的衰减作用,使第一零值发射角以外的波束只能在波源附近传播,因此在波源附近形成一些副瓣。贝塞尔函数来自EEWiki.跳转到:导航,搜索贝塞尔函数是数学上的一类特殊函数的总称。贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔•伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。丹尼尔的叔叔雅各布•伯努利,欧拉、拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。1817年,德国数学家贝塞尔在研究开普勒提出的三体引力系统的运动问题时,第一次系统地提出了贝塞尔函数的总体理论框架,後人以他的名字来命名了这种函数。利用柱坐标求解涉及在圆、球与圆柱内的势场的物理问题时出现的一类特殊函数。又称标函数。用柱坐标解拉普拉斯方程时,用到贝塞尔函数,它们和其他函数组合成柱调和函数。除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。贝塞尔函数最早出现在涉及如悬链振荡,长圆柱体冷却以及紧张膜振动的问题中。贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的.贝塞尔方程为:v阶贝塞尔方程:贝塞尔方程的解:(1)当v≠整数时,通解为,为第一类贝塞尔函数.(2)当v取任意值时:通解可表示为,为第二类贝塞尔函数;(3)当v取任意值时:通解也可表为,为第三类贝塞尔函数.三类贝塞尔函数的表示式:第一类贝塞尔函数级数表示第二类贝塞尔函数表示第三类贝塞尔函数表示式贝塞尔方程的本征值:(1).第一类边界条件的贝塞尔方程本征值:其中表征的第n个正零点;(2).第二类齐次边界条件.本征值:,其中是的第n个零点.(3).第三类齐次边界条件本征值:.其中是的第个零点.贝塞尔函数的基本性质:(1).递推公式;或;任意满足一组递推关系的函数统称为柱函数.可以证明柱函数满足贝塞尔方程.注意:贝塞尔函数的递推公式是非常重要的.(2).贝塞尔函数正交性和模(i).正交性当时,有(ii).贝塞尔函数的模:贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导问题;圆形(或环形)薄膜的振动模态分析问题;在其他一些领域,贝塞尔函数也相当有用。譬如在信号处理中的调频合成(FMsynthesis)或凯泽窗(Kaiserwindow)的定义中,都要用到贝塞尔函数。关于贝塞尔函数的求解,请参考:http://sxwl.hrbeu.edu.cn/yutao/yu/05.pdf来自"http://baike.chinaecnet.com/eewiki/index.php/%E8%B4%9D%E5%A1%9E%E5%B0%94%E5%87%BD%E6%95%B0"

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

波束指向性和半扩散角0806

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部