路径优化的Floyd,dijkstra,A*算法的matlab代码路径优化的Floyd,dijkstra,A*算法的matlab代码附件:Astar.zip附件:dijkstra.zip附件:FloydSPR2007-11-917:41#1hgc13工程师精华0积分63帖子105水位210技术分0状态离线Floyd最短路径算法2006-10-20,byleon_jlu在图论中经常会遇到这样的问题,在一个有向图里,求出任意两个节点之间的最短距离。我们在离散数学、数据结构课上都遇到过这个问题,在计算机网络里介绍网络层的时候好像也遇到过这个问题,记不请了...但是书本上一律采取的是Dijkstra算法,通过Dijkstra算法可以求出单源最短路径,然后逐个节点利用Dijkstra算法就可以了。不过在这里想换换口味,采取RobertFloyd提出的算法来解决这个问题。下面让我们先把问题稍微的形式化一下:如果有一个矩阵D=[d(ij)],其中d(ij)>0表示i城市到j城市的距离。若i与j之间无路可通,那么d(ij)就是无穷大。又有d(ii)=0。编写一个程序,通过这个距离矩阵D,把任意两个城市之间的最短与其行径的路径找出来。我们可以将问题分解,先找出最短的距离,然后在考虑如何找出对应的行进路线。如何找出最短路径呢,这里还是用到动态规划的知识,对于任何一个城市而言,i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(ij)与d(ik)+d(kj)的值;在此d(ik)与d(kj)分别是目前为止所知道的i到k与k到j的最短距离,因此d(ik)+d(kj)就是i到j经过k的最短距离。所以,若有d(ij)>d(ik)+d(kj),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(ij)重写为d(ik)+d(kj),每当一个k查完了,d(ij)就是目前的i到j的最短距离。重复这一过程,最后当查完所有的k时,d(ij)里面存放的就是i到j之间的最短距离了。所以我们就可以用三个for循环把问题搞定了,但是有一个问题需要注意,那就是for循环的嵌套的顺序:我们可能随手就会写出这样的程序,但是仔细考虑的话,会发现是有问题的。for(inti=0;i...->p->j,也就是说p是i到j的最短行径中的j之前的最后一个城市。P矩阵的初值为p(ij)=i。有了这个矩阵之后,要找最短路径就轻而易举了。对于i到j而言找出p(ij),令为p,就知道了路径i->...->p->j;再去找p(ip),如果值为q,i到p的最短路径为i->...->q->p;再去找p(iq),如果值为r,i到q的最短路径为i->...->r->q;所以一再反复,到了某个p(it)的值为i时,就表示i到t的最短路径为i->t,就会的到答案了,i到j的最短行径为i->t->...->q->p->j。因为上述的算法是从终点到起点的顺序找出来的,所以输出的时候要把它倒过来。但是,如何动态的回填P矩阵的值呢?回想一下,当d(ij)>d(ik)+d(kj)时,就要让i到j的最短路径改为走i->...->k->...->j这一条路,但是d(kj)的值是已知的,换句话说,就是k->...->j这条路是已知的,所以k->...->j这条路上j的上一个城市(即p(kj))也是已知的,当然,因为要改走i->...->k->...->j这一条路,j的上一个城市正好是p(kj)。所以一旦发现d(ij)>d(ik)+d(kj),就把p(kj)存入p(ij)。下面是具体的C代码:#include#include#include#defineMAXSIZE20voidfloyd(int[][MAXSIZE],int[][MAXSIZE],int);voiddisplay_path(int[][MAXSIZE],int[][MAXSIZE],int);voidreverse(int[],int);voidreadin(int[][M...