神木县大柳塔初级中学教师共用教案年级:八年级科目:数学主备:刘美参与:刘曰东高晓勇时间2014-6-3教学内容6.2平行四边形的判定(1)学习目标1.会证明平行四边形的2种判定方法。2.理解平行四边形的这两种判定方法,并学会简单运用。学习重点平行四边形判定方法的探究、运用。学习难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用。学习方法学生自主学习加老师讲授资源利用网络资源和教辅书资源导学设计(主备设计、集体研讨)二次备课(个性化设计)第一环节:复习引入。问题11.平行四边形的定义是什么?它有什么作用?2.平行四边形还有哪些性质?目的:教师提出问题1、2,由学生独立思考,并口答得出定义正反两方面的作用,总结出平行四边形的其他几条性质。在此活动中,教师应重点关注:(1)学生参与思考问题的积极性;(2)学生能否准确、全面地回答出平行四边形的全部性质;(3)学生能否由平行四边形的性质,猜测出平行四边形的判断方法。第二环节:定理探索。活动1:工具:两对长度分别相等的笔.动手:能否在平面内用这四根笔摆成一个平行四边形?思考1.1:你能说明你所摆出的四边形是平行四边形吗?已知:如图6-8(1),在四边形ABCD中,AB=CD,BC=AD求证:四边形ABCD是平行四边形.证明:如图6-8(2)连接BD.在△ABD和△CDB中 AB=CDAD=CBBD=DB∴△ABD≌△CDB∴∠1=∠2∠3=∠4∴AB∥CDAD∥CB∴四边形ABCD是平行四边形思考1.2:以上活动事实,能用文字语言表达吗?得出:两组对边分别相等的四边形是平行四边形。目的:学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.(2)通过观察、实验、猜想到:两组对边分别相等的四边形是平行四边形.通过学生的互相交流,口述其推理论证的过程.根据学生的认知水平,教师应估计到学生可能会在推理论证时遇到困难,所以应加以适当引导。在此活动中,教师应重点关注:(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;(3)学生能否通过独立思考、小组合作得出正确的证明思路。活动2工具:两根长度相等的笔,两条平行线(可利用横格线).动手:请利用两根长度相等的笔能摆出以笔顶端为顶点的平行四边形吗?利用两根长度相等的笔和两条平行线,能摆出以笔顶端为顶点的平行四边形吗?思考2.1:你能说明你所摆出的四边形是平行四边形吗?如图6-9(1),在四边形ABCD中,AB∥CD,且AB=CD.求证:四边形ABCD是平行四边形.ABCDEFA1A2A4A3A6A5证明:如图6-9(2),连接AC. AB∥CD∴∠BAC=∠ACD又 AB=CDAC=CA∴△BAC≌△DCA∴BC=AD∴四边形ABCD是平行四边形思考2.2:以上活动事实,能用文字语言表达吗?得出:一组对边平行且相等的四边形是平行四边形.目的:得出平行四边形的判定:一组对边平行且相等的四边形是平行四边形.注意事项:在此活动中,教师应重点关注:(1)学生实验操作的准确性;(2)学生能否运用不同的方法从理论上证明他们的猜想、发现;(3)学生使用几何语言的规范性和严谨性。第三环节:巩固练习。例1如图6-10,在平行四边形ABCD中,E、F分别是AD和BC的中点。求证:四边形BFDE是平行四边形.证明: 四边形ABCD是平行四边形∴AD=CBAD//BC又 E、F分别是AD和BC的中点∴ED=1|2ADBF=1|2BC∴DE=BF又 ED∥BF∴四边形BFDE是平行四边形随堂练习:1.如图:线段AD是线段BC经过平移所得到的,分别连接AB、CD.四边形ABCD是平行四边形吗?为什么?2.如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?3如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.目的:通过练习,让学生进一步熟练掌握平行四边形判定定理。第四环节:回顾小结。师生共同小结,主要围绕下列几个问题:(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?(3)...