电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标版)高考数学真题分类汇编 13 推理与证明 文VIP免费

(新课标版)高考数学真题分类汇编 13 推理与证明 文_第1页
1/2
(新课标版)高考数学真题分类汇编 13 推理与证明 文_第2页
2/2
第十三章推理与证明考点一合情推理与演绎推理1.(课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.答案A2.(福建,16,4分)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c等于.答案2013.(江西,21,14分)将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数,F(n)为这个数的位数(如n=12时,此数为123456789101112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.解析(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=.(2)F(n)=(3)当n=b(1≤b≤9,b∈N*)时,g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=同理有f(n)=1≤k≤8,0≤b≤9,k∈N*,b∈N,由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90.所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0;当n=90时,p(90)===;当n=10k+9(1≤k≤8,k∈N*)时,p(n)===,由于y=关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=.又<,所以当n∈S时,p(n)的最大值为.考点二直接证明与间接证明4.(山东,4,5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案A5.(天津,20,14分)已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标版)高考数学真题分类汇编 13 推理与证明 文

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群