高二数学以形示数、数形结合普通高中新课标数学教材A版必修①的第86页介绍方程的根与函数的零点知识,有如下结论:结论:方程有实数根函数的图象与轴有交点函数有零点;并由此很容易得到如下推论:推论:方程有实数根函数的图象与函数有交点函数有零点;二高一学生已经学习了正比例函数、反比例函数、一次函数、二次函数、指数函数、对数函数与幂函数,其中还总结了函数图象的对称与平移知识,于是高一学生有作较丰富多样函数图象的能力。因此我们有必要让学生发挥函数图象的作用,以形示数,数形结合,解决有关方程根的个数问题与含参方程的参数的取值问题及其他应用函数的应用问题。例1、方程的根的个数是()A0B1C2D3分析:思路一、构造函数则∴在内有零点,又在(0,+∞)上为增函数∴在定义域(0,+∞)内仅有一个零点。思路二、令在同一坐标系中作出两个函数与的图象(如图1)由图可知两曲线只有一个公共点,故方程只用心爱心专心有一个解。注:在思路一中既要弄出,还要说明在定义域内是单调的,方可得出方程仅有一根。至于函数在整个定义域内不单调,或者不能确定函数的单调性,只能分开讨论解答(见下面的例题2)。思路二中,只要作出两个函数的图象即可。例2、判断方程的根的个数分析:思路一、构造函数,函数在定义域内不单调。时,递增,∴在(1,+∞)上有唯一的一个零点。时,恒成立,在上无零点。∴在(0,+∞)上,有且仅有一个零点。即方程的解只有一个。思路二、令:在同一坐标系中作出二者的图象(如图2)。由图可知方程只有一个解。注:通过两个实例,发现思路二较思路一要简捷些,思路二可以导出思路一中根所在的区间端点,对于方程中含有参数时,思路一无能为力了,请看下面的例题。例3、若关于x的方程有两个不同的实根,求实数m的取值范围。分析:将方程变形,引入两个函数,用心爱心专心在现一坐标系中作出与的图象(如图3)。表示以(-m,0)为端点位于x轴上方的动射线,表示是由幂函数向左平移一个单位得到的图象。当m=1时射线与曲线恰有两交点当射线与曲线相切,即方程只有一个解时,由的结合图形,得:。例4、设a为常数,试讨论方程的实根的个数。分析:思路一、x应满足的条件是:原方程变形为:令在同一坐标系中作出两个函数的图象,(如图4)当方程只有一个实根时,用心爱心专心由结合图形,当或时,方程没有实根;当或时方程只有一实根;当时方程有两实根。思路二、原方程等价于令,在同一坐标系内作出两个函数的图象(图5),动直线与曲线交点的个数对应方程解的个数。所以,当或时,方程没有实根;当或时方程只有一实根;当时方程有两实根。注:使用图象法解题时,既要考虑作图的可行性,又要注意问题转化的等价性。用心爱心专心