电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

安徽省安庆市第九中学高中数学《1.1 正弦定理》教案(2) 新人教A版必修5VIP免费

安徽省安庆市第九中学高中数学《1.1 正弦定理》教案(2) 新人教A版必修5_第1页
1/3
安徽省安庆市第九中学高中数学《1.1 正弦定理》教案(2) 新人教A版必修5_第2页
2/3
安徽省安庆市第九中学高中数学《1.1 正弦定理》教案(2) 新人教A版必修5_第3页
3/3
1.1正弦定理授课类型:新授课一、教学目标1.知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.2.过程与方法让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作.3.情感态度与价值观培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.二、教学重点、难点1.重点:正弦定理的探索和证明及其基本应用.2.难点:已知两边和其中一边的对角解三角形时判断解的个数.三、教学过程(一)课题导入如图,固定ABC的边CB及B,使边AC绕着顶点C转动.A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大.能否用一个等式把这种关系精确地表示出来?(二)新知探究在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又,则bAc从而在直角三角形ABC中,CaB思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,C同理可得,ba从而AcB思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题.(证法二):过点A作,C用心爱心专心1BC由向量的加法可得则AB∴∴,即同理,过点C作,可得从而类似可推出,当ABC是钝角三角形时,以上关系式仍然成立.(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即注意:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,,;(2)等价于,,从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.(三)例题讲解例1.在中,已知,,cm,解三角形.解:根据三角形内角和定理,;根据正弦定理,;根据正弦定理,用心爱心专心2评述:对于解三角形中的复杂运算可使用计算器.例2.在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm).解:根据正弦定理,因为<<,所以,或⑴当时,,⑵当时,,评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形.(四)课堂练习第5页练习第1(1)、2(1)题.补充练习已知ABC中,,求(答案:1:2:3)(五)课堂小结(由学生归纳总结)(1)定理的表示形式:;或,,(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角.用心爱心专心3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

安徽省安庆市第九中学高中数学《1.1 正弦定理》教案(2) 新人教A版必修5

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部