舜耕中学高一数学必修3导学案(教师版)编号周次上课时间月日周课型新授课主备人使用人课题3.2.1古典概型教学目标1.正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.古典概型的定义;3.掌握古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A4.求古典概型的步骤;教学重点正确理解掌握古典概型及其概率公式教学难点正确理解掌握古典概型及其概率公式课前准备多媒体课件教学过程:一、〖创设情境〗1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?21世纪教育网若事件A发生时事件B一定发生,则.若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.2概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则P(A)+P(B)=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.二、〖新知探究〗我们再来分析事件的构成,考察两个试验:(1)掷一枚质地均匀的硬币的试验。(2)掷一枚质地均匀的骰子的试验。有哪几种可能结果?在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件我们把这类随机事件称为基本事件综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.用心爱心专心例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.上述试验和例1的共同特点是:(1)试验中有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等,这有我们将具有这两个特点的概率模型称为古典概率模型古典概型思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.在射击练习中,“射击一次命中的环数”是古典概型吗?为什么?不是,因为命中的环数的可能性不相等.思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=1.思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?1n思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点”的概率如何计算?思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.用心爱心专心思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?P(A)=事件A所包含的基本事件的个数÷基本事件的总数思考10:从集合的观点分...