电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学:1.1.1 任意角 教案(苏教版必修4)VIP免费

高中数学:1.1.1 任意角 教案(苏教版必修4)_第1页
1/5
高中数学:1.1.1 任意角 教案(苏教版必修4)_第2页
2/5
高中数学:1.1.1 任意角 教案(苏教版必修4)_第3页
3/5
第1课时:§1.1.1任意角【三维目标】:一、知识与技能1.使学生理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角;2.能在00到0360范围内,找出一个与已知角终边相同的角,并判定其为第几象限角;3.能写出与任一已知角终边相同的角的集合二、过程与方法1.通过创设情境,类比初中所学的角的概念,从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;2.通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;3.讲解例题,总结方法,巩固练习.三、情感、态度与价值观1.通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系.2.理解掌握终边相同角的表示方法,树立运动变化的观点,理解静是相对的,动是绝对的,学会运用运动变化的观点认识事物,并由此深刻理解推广后的角的概念.【教学重点、难点与关键】:重点:任意角的概念难点:把终边相同的角用集合和符号语言正确地表示出来;关键:理解终边相同的角的意义【学法与教学用具】:1.学法:在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示,以及正负角的表示,另外还有相同终边角的集合的表示等。2.教学用具:多媒体、实物投影仪、三角板、圆规.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题我们已经学习过一些角,如锐角、直角、钝角、平角、周角。利用这些角,我们已能表示圆周上某些点P。但要表示圆周上周而复始地运动着的点,仅有这些角是不够的。如点P绕圆心旋转一周半,所在位置怎样用角来表示?在生活中,也有类似情形。如在体操、跳水中,有“转体0720”、“翻腾两周半”这样的动作名称,“0720”在这里也是用来表示旋转程度的一个角。●0720是怎样的一个角?二、研探新知1.角的概念的推广⑴“旋转”形成角用心爱心专心一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。射线的端点称为角的顶点,射线旋转的开始位置和终止位置称为角的始边和终边。如图1-1-1所示,射线OA绕着端点O按箭头所示方向旋转到OB便形成角.点O叫做角的顶点,射线OA、OB分别叫做角的始边和终边。因此0720就是旋转两周所形成的角。图1-1-1图1-1-2【说明】:在不引起混淆的前提下,“角”或“”可以简记为.⑵.“正角”、“负角”、“0角”的概念我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.【说明】:零角的始边和终边重合。用“旋转”定义角之后,角的范围大大地扩大了。角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样。角的大小比较与实数类似。2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角:在直角坐标系中,角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来:(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。例如:30,390,330都是第一象限角;300,60是第四象限角。(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:90,180,270等等。【说明】:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”。因为x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。角的终边落在坐标轴上,则此角不属于任何一个象限。.3.终边相同的角【思考】:(1)0300...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学:1.1.1 任意角 教案(苏教版必修4)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部