电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学选修本(理科)函数的极值(2)VIP免费

高中数学选修本(理科)函数的极值(2)_第1页
1/5
高中数学选修本(理科)函数的极值(2)_第2页
2/5
高中数学选修本(理科)函数的极值(2)_第3页
3/5
函数的极值(2)教学目的:1.熟练掌握求可导函数的极值的步骤,灵活应用奎屯王新敞新疆教学重点:极大、极小值的判别方法,求可导函数的极值的步骤的灵活掌握奎屯王新敞新疆教学难点:求可导函数的极值.授课类型:新授课奎屯王新敞新疆课时安排:1课时奎屯王新敞新疆教具:多媒体、实物投影仪奎屯王新敞新疆教学过程:一、复习引入:1.常见函数的导数公式:;;;奎屯王新敞新疆2.法则1.法则2,奎屯王新敞新疆法则3奎屯王新敞新疆3.复合函数的导数:设函数u=(x)在点x处有导数u′x=′(x),函数y=f(u)在点x的对应点u处有导数y′u=f′(u),则复合函数y=f((x))在点x处也有导数,且或f′x((x))=f′(u)′(x)奎屯王新敞新疆4.复合函数求导的基本步骤是:分解——求导——相乘——回代.奎屯王新敞新疆5.对数函数的导数:奎屯王新敞新疆奎屯王新敞新疆6.指数函数的导数:奎屯王新敞新疆奎屯王新敞新疆7.函数的导数与函数的单调性的关系:设函数y=f(x)在某个区间内有导数,如果在这个区间内>0,那么函数y=f(x)在为这个区间内的增函数;如果在这个区间内<0,那么函数y=f(x)在为这个区间内的减函数奎屯王新敞新疆8.用导数求函数单调区间的步骤:①求函数f(x)的导数f′(x).②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间奎屯王新敞新疆9.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点奎屯王新敞新疆10.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点奎屯王新敞新疆11.极大值与极小值统称为极值奎屯王新敞新疆注意以下几点:(ⅰ)极值是一个局部概念奎屯王新敞新疆由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小奎屯王新敞新疆并不意味着它在函数的整个的定义域内最大或最小奎屯王新敞新疆(ⅱ)函数的极值不是唯一的奎屯王新敞新疆即一个函数在某区间上或定义域内极大值或极小值可以不止一个奎屯王新敞新疆(ⅲ)极大值与极小值之间无确定的大小关系奎屯王新敞新疆即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>奎屯王新敞新疆(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点奎屯王新敞新疆而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点奎屯王新敞新疆12.判别f(x0)是极大、极小值的方法:用心爱心专心115号编辑若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值奎屯王新敞新疆13.求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x)奎屯王新敞新疆(2)求方程f′(x)=0的根奎屯王新敞新疆(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值奎屯王新敞新疆二、讲解范例:例1对可导函数,在一点两侧的导数异号是这点为极值点的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件答案:C.充要条件奎屯王新敞新疆由极大、极小值的判别方法可以知道是充分条件.由极大值点的定义,任意x<x0,f(x)<f(x0)奎屯王新敞新疆所以左侧是增函数,所以f′(x)>0,任意x>x0,f(x)<f(x0).所以右侧是减函数,所以f′(x)<0,所以x0两侧的导数异号奎屯王新敞新疆当x0是极小值时,同样可以证明奎屯王新敞新疆例2下列函数中,x=0是极值点的函数是(B)A.y=-x3B.y=cos2xC.y=tanx-xD.y=分析:做这题需要按求极值的三个步骤,一个一个求出来吗?不需要,因为它只要判断x=0是否是极值点,只要看x=0点两侧的导数是否异号就可以了.解:A.y=-x3, y′=(-x3)′=-3x2,当x<0或x>0时,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学选修本(理科)函数的极值(2)

您可能关注的文档

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部