电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学第二章 随机变量及其分布教案 2.3离散型随机变量的均值与方差选修2-3 VIP免费

高中数学第二章 随机变量及其分布教案  2.3离散型随机变量的均值与方差选修2-3 _第1页
1/14
高中数学第二章 随机变量及其分布教案  2.3离散型随机变量的均值与方差选修2-3 _第2页
2/14
高中数学第二章 随机变量及其分布教案  2.3离散型随机变量的均值与方差选修2-3 _第3页
3/14
2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值教学目标:知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学重点:离散型随机变量的均值或期望的概念奎屯王新敞新疆教学难点:根据离散型随机变量的分布列求出均值或期望奎屯王新敞新疆授课类型:新授课奎屯王新敞新疆课时安排:2课时奎屯王新敞新疆教具:多媒体、实物投影仪奎屯王新敞新疆教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量奎屯王新敞新疆随机变量常用希腊字母ξ、η等表示奎屯王新敞新疆2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量奎屯王新敞新疆3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量奎屯王新敞新疆4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出奎屯王新敞新疆若是随机变量,baba,,是常数,则也是随机变量奎屯王新敞新疆并且不改变其属性(离散型、连续型)奎屯王新敞新疆5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为()iiPxp,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列奎屯王新敞新疆6.分布列的两个性质:⑴Pi≥0,i=1,2,…;⑵P1+P2+…=1.7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是knkknnqpCkP)(,(k=0,1,2,…,n,pq1).于是得到随机变量ξ的概率分布如下:ξ01…k…nPnnqpC00111nnqpC…knkknqpC…0qpCnnn称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记knkknqpC=b(k;n,p).8.离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为kA、事件A不发生记为kA,P(kA)=p,P(kA)=q(q=1-p),那么112311231()()()()()()()kkkkkPkPAAAAAPAPAPAPAPAqp(k=0,1,2,…,pq1).于是得到随机变量ξ的概率分布如下:ξ123…k…Pppq2qp…1kqp…称这样的随机变量ξ服从几何分布奎屯王新敞新疆记作g(k,p)=1kqp,其中k=0,1,2,…,pq1.二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ45678910P0.020.040.060.090.280.290.22在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望奎屯王新敞新疆根据射手射击所得环数ξ的分布列,我们可以估计,在n次射击中,预计大约有nnP02.0)4(次得4环;nnP04.0)5(次得5环;…………nnP22.0)10(次得10环.故在n次射击的总环数大约为n02.04n04.05n22.01002.04(04.05n)22.010,从而,预计n次射击的平均环数约为02.0404.0532.822.010.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(iP(i=0,1,2,…,10),我们可以同...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学第二章 随机变量及其分布教案 2.3离散型随机变量的均值与方差选修2-3 

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部