3.1.2类比推理学习目标1.理解类比推理的意义;了解类比推理的特点;2.掌握运用类比推理的一般步骤。会进行简单的类比推理。3.了解归纳推理与类比推理的异同;4.理解合情推理的含义,了解所得结果不一定正确;5.了解合情推理在科学实验和创造中的价值,增强在数学学习中自觉运用合情推理的意识。提高归纳、类比联想的能力。重难点剖析重点:掌握类比推理的特点与步骤;难点:在类比推理的运用中发现两类对象间相似性质潜在的关联性;学习过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。例1、试根据等式的性质猜想不等式的性质。等式的性质:猜想不等式的性质:(1)a=bÞa+c=b+c;(1)a>bÞa+c>b+c;(2)a=bÞac=bc;(2)a>bÞac>bc;(3)a=bÞa2=b2;等等。(3)a>bÞa2>b2;等等。问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆球弦←→截面圆直径←→大圆1周长←→表面积面积←→体积圆的性质球的性质圆心与弦(不是直径)的中点的连线垂直于弦球心与截面圆(不是大圆)的圆点的连线垂直于截面圆与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长与球心距离相等的两截面圆相等;与球心距离不等的两截面圆不等,距球心较近的截面圆较大圆的切线垂直于过切点的半径;经过圆心且垂直于切线的直线必经过切点球的切面垂直于过切点的半径;经过球心且垂直于切面的直线必经过切点经过切点且垂直于切线的直线必经过圆心经过切点且垂直于切面的直线必经过球心☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:⑴找出两类对象之间可以确切表述的相似特征;⑵用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;⑶检验猜想,即例3如图,已知点O是ABC内任意一点,连结,,,COBOAO并延长交对边于111,,CBA,则1111111CCOCBBOBAAOA(Ⅰ)类比猜想,对于空间四面体BCDV,存在什么类似的结论(Ⅱ)?并用证明(Ⅰ)时类似的方法给出证明。分析:平面中的三角形可与空间的四面体进行类比,三角形内一点对应于四面体内一点,三角形的三个顶点类比四面体的四个顶点,三角形的三边类比四面体的四个面,于是可类比得到相应的结论(Ⅱ);而证明,(Ⅰ)可用面积法,那么证明(Ⅱ)可类比使用体积法。注意:本题不仅用类比得到一个新的性质,而且证明方法上也运用了类比的方法。2观察、比较联想、类推猜想新结论变式练习1若三角形内切圆半径为r,三边长为cba,,,则三角形的面积)(21cbarS;根据类比思想,若四面体内切球半径为R,四个面的面积为4321,,,SSSS,则四面体的体积V(试证明这两个结论)。例4在等差数列na中,若010a,则有等式:naaa21naaa1921),19(Nnn。类比上述性质,相应地,在等比数列nb中,若19b,则有等式成立。分析:等差数列中“与首末两项等距的两项和相等”,等比数列中“与首末两项等距的两项积相等”,由此联想到等差数列的两项和可与等比数列的两项积类比。变式练习2由三角形的边的不等关系容易得到不等式:||||||||||bababa类比上述不等式,对于数ba,有类似的不等式吗?若有写出来并对真假作出判断。例5我们知道,“过圆心为O的圆外一点P作它的两条切线PA、PB,其中A、B为切点,则∠POA=∠POB。”这个性质可以推广到所有圆锥曲线,请写出其中一个:。3点评:本题是平面几何中圆的性质与圆锥曲线性质的类比猜想,直觉思维与合...