第2课时补集及综合应用知识点补集1.全集如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U.2.补集全集并不是一个含有任何元素的集合,仅包含所研究问题涉及的所有元素.∁UA的三层含义:(1)∁UA表示一个集合;(2)A是U的子集,即A⊆U;(3)∁UA是U中不属于A的所有元素组成的集合.[教材解难]理解补集应关注三点(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是相互依存、不可分割的两个概念.(2)∁UA包含三层意思:①A⊆U;②∁UA是一个集合,且∁UA⊆U;③∁UA是由U中所有不属于A的元素构成的集合.(3)若x∈U,则x∈A或x∈∁UA,二者必居其一.[基础自测]1.设全集U=R,集合P={x|-2≤x<3},则∁UP等于()A.{x|x<-2或x≥3}B.{x|x<-2或x>3}C.{x|x≤-2或x>3}D.{x|x≤-2且x≥3}解析:由P={x|-2≤x<3}得∁UP={x|x<-2或x≥3}.答案:A2.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁UB)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}解析: ∁UB={1,5,6},∴A∩(∁UB)={1,2}∩{1,5,6}={1}.答案:B3.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)等于()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|03}.又P=,所以(∁UB)∪P=.又∁UP=,所以(A∩B)∩(∁UP)={x|-1