第十二课时函数的单调性和奇偶性【学习导航】学习要求:1、熟练掌握函数单调性,并理解复合函数的单调性问题。2、熟练掌握函数奇偶性及其应用。3、学会对函数单调性,奇偶性的综合应用。【精典范例】一、利用函数单调性求函数最值例1、已知函数y=f(x)对任意x,y∈R均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.(1)判断并证明f(x)在R上的单调性;(2)求f(x)在[-3,3]上的最大、小值。思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。二、复合函数单调性例2、求函数y=的单调区间,并对其中一种情况证明。思维分析:要求出y=的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.三、利用奇偶性,讨论方程根情况例3、已知y=f(x)是偶函数,且图象与x轴四个交点,则方程f(x)=0的所有实根之和是()A.4B.2C.0D.不知解析式不能确定四、利用奇偶性,单调性解不等式例4、设f(x)是定义在[-2,2]上的偶函数,当x≥0时,f(x)单调递减,若f(1-m)