电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 (2.3.2 等差数列的前n项和(二))示范教案 新人教A版必修5VIP免费

高中数学 (2.3.2 等差数列的前n项和(二))示范教案 新人教A版必修5_第1页
1/4
高中数学 (2.3.2 等差数列的前n项和(二))示范教案 新人教A版必修5_第2页
2/4
高中数学 (2.3.2 等差数列的前n项和(二))示范教案 新人教A版必修5_第3页
3/4
2.3.2等差数列的前n项和(二)从容说课“等差数列的前n项和”第二节课的主要内容是让学生进一步熟练掌握等差数列的通项公式和前n项和公式,进一步去了解等差数列的一些性质,并会用它们解决一些相关问题;学会利用等差数列通项公式与前n项和的公式研究Sn的最值,学会其常用的数学方法和体现出的数学思想.从而提高学生分析问题、解决问题的能力.通过本节课的教学使学生对等差数列的前n项和公式的认识更为深刻.通过本节例题的教学,使学生能活用求和公式解题,并进一步感受到数列与函数、数列与不等式等方面的联系,促进学生对本节内容认知结构的形成,通过探究一些特殊数学求和问题的思路和方法,体会数学思想方法的运用.在本节教学中,应让学生融入问题情境中,经历知识的形成和发展,通过观察、操作、探索、交流、反思,来认识和理解等差数列的求和内容,学会学习并能积极地发展自己的能力.教学重点熟练掌握等差数列的求和公式.教学难点灵活应用求和公式解决问题.教具准备多媒体课件、投影仪、投影胶片等三维目标一、知识与技能1.进一步熟练掌握等差数列的通项公式和前n项和公式;2.了解等差数列的一些性质,并会用它们解决一些相关问题;3.会利用等差数列通项公式与前n项和的公式研究Sn的最值.二、过程与方法1.经历公式应用的过程,形成认识问题、解决问题的一般思路和方法;2.学会其常用的数学方法和体现出的数学思想,促进学生的思维水平的发展.三、情感态度与价值观通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.教学过程导入新课师首先回忆一下上一节课所学主要内容.生我们上一节课学习了等差数列的前n项和的两个公式:(1);(2).师对,我们上一节课学习了等差数列的前n项和的公式,了解等差数列的一些性质.学会了求和问题的一些方法,本节课我们继续围绕等差数列的前n项和的公式的内容来进一步学习与探究.推进新课[合作探究]师本节课的第一个内容是来研究一下等差数列的前n项和的公式的函数表示,请同学们将求和公式写成关于n的函数形式.生我将等差数列{an}的前n项和的公式整理、变形得到:1n.(*)师很好!我们能否说(*)式是关于n的二次函数呢?生1能,(*)式就是关于n的二次函数.生2不能,(*)式不一定是关于n的二次函数.师为什么?生2若等差数列的公差为0,即d=0时,(*)式实际是关于n的一次函数!只有当d≠0时,(*)式才是关于n的二次函数.师说得很好!等差数列{an}的前n项和的公式可以是关于n的一次函数或二次函数.我来问一下:这函数有什么特征?生它一定不含常数项,即常数项为0.生它的二次项系数是公差的一半.……师对的,等差数列{an}的前n项和为不含常数项的一次函数或二次函数.问:若一数列的前n项和为n的一次函数或二次函数,则这数列一定是等差数列吗?生不一定,还要求不含常数项才能确保是等差数列.师说的在理.同学们能画出(*)式表示的函数图象或描述一下它的图象特征吗?生当d=0时,(*)式是关于n的一次函数,所以它的图象是位于一条直线上的离散的点列,当d≠0时,(*)式是n的二次函数,它的图象是在二次函数的图象上的一群孤立的点.这些点的坐标为(n,Sn)(n=1,2,3,…).师说得很精辟.[例题剖析]【例】(课本第51页例4)分析:等差数列{an}的前n项和公式可以写成,所以Sn可以看成函数(x∈N*)当x=n时的函数值.另一方面,容易知道Sn关于n的图象是一条抛物线上的点.因此我们可以利用二次函数来求n的值.(解答见课本第52页)师我们能否换一个角度再来思考一下这个问题呢?请同学们说出这个数列的首项和公差.生它的首项为5,公差为.师对,它的首项为正数,公差小于零,因而这个数列是个单调递减数列,当这数列的项出现负数时,则它的前n项的和一定会开始减小,在这样的情况下,同学们是否会产生新的解题思路呢?生老师,我有一种解法:先求出它的通项,求得结果是an=a1+(n-1)d=.我令≤0,得到了n≥8,这样我就可以知道a8=0,而a9<0.从而便可以发现S7=S8,从第9项和Sn开...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 (2.3.2 等差数列的前n项和(二))示范教案 新人教A版必修5

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部