电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 6.4.1《线性回归方程1》教案 苏教版必修3VIP免费

高中数学 6.4.1《线性回归方程1》教案 苏教版必修3_第1页
1/4
高中数学 6.4.1《线性回归方程1》教案 苏教版必修3_第2页
2/4
高中数学 6.4.1《线性回归方程1》教案 苏教版必修3_第3页
3/4
线性回归方程第25课时【学习导航】学习要求1.理解线性回归的基本思想和方法,体会变量之间的相关关系。线性回归方程的求法。2.会画出一组数据的散点图,并会通过散点图判断出这组数据是否具有线性关系。【课堂互动】自学评价在实际问题中,变量之间的常见关系有两类:一类是确定性函数关系,变量之间的关系可以用函数表示,另一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达2.建立平面直角坐标系,将数据构成的数对所表示的点在坐标系内标出,这样的图称为散点图(scatterdiagram)3.在散点图中如果点散布在一条直线的附近,可用线性函数近似地表示x和y之间的关系。选择怎样的直线我们有下列思考方案:(1)选择能反映直线变化的两个点(2)取一条直线,使得位于该直线一侧和另一侧点的个数基本相同(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距4.用方程为abxyˆ的直线拟合散点图中的点,应使得该直线与散点图中的点最接近。用最小二乘法来求a、b的原理和方法见教科书P725.能用直线方程abxyˆ近似表示的相关关系叫做线性相关关系(linearcorrelation)6.设有(x,y)的n对观察数据如下:x1x2x3x…nxy1y2y3y…ny当a,b使211)(abxyQ2222)()(abxyabxynn取得最小值时,就称abxyˆ为拟合这n对数据的线性回归方程(linearregressionequation),将该方程所表示的直线称为回归直线。6.用书上的方法3,可求得线性回归方程abxyˆ中的系数:2112111)())((niiniiniiniiniiixxnyxyxnb用心爱心专心1a=xby(*)7.用回归直线进行拟合的一般步骤为:(1)作出散点图,判断散点是否在一条直线附近(2)如果散点在一条直线附近,用上面的公式求出a,b,并写出线性回归方程【精典范例】例1下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由。机动车辆数x/千台95110112120129135150180交通事故数y/千件6.27.57.78.58.79.810.213【解】在直角坐标系中描出数据的散点图,直观判断散点在一直线附近,故具有线性相关关系,计算相应的数据之和:103181iix,6.7181iiy137835812iix7.961181iiiyx将它们代入(*)式计算得0774.0b,0241.1a,所以,所求线性回归方程为0241.10774.0ˆxy例2一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,测得数据如下:零件数x(个)1020304050加工时间y(分)6268758189零件数x(个)60708090100加工时间y(分)95102108115122(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线的附近,求y与x之间的线性回归方程。【解】(1)用心爱心专心2加工时间y(分)050100150050100150加工时间y(分)(2)由表中数据,可以求得:55x,7.91y,101238500iix101287777iiy,55950101iiiyx将它们代入(*)式计算得668.0b,96.54a因此所求的回归直线方程是96.54668.0ˆxy追踪训练1、下列两个变量之间的关系哪个不是函数关系(D)A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高奎屯王新敞新疆2、下面是我国居民生活污水排放量的一组数据(单位:810t),试分别估计1996年和2004年我国居民生活污水排放量。年份1995199619971998排放量151189.1194.8年份1999200020012002排放量203.8220.9227.7232.3解:通过散点图(如下图,EXCEL制作)可以发现年份与污水排放量之间具有线性相关关系,用公式可求得线性回归方程为:yˆ=11.447x-22678所以,当x=1996时,y=170.2(108t);当x=2004时,y=261.8(108t).用心爱心专心3第10课时线性回归方程(1)分层训练1.长方形的面积一定时,长和宽具有()(A)不确定性关系(B)相关关系(C)函数关系(D)无任何关系2.三点(3,10),(7,20),(11,24)的线性回归方程是()(A)xy175ˆ(B)xy517ˆ(C)xy517ˆ(D)xy517ˆ3.已知线性回归方程为:81.050.0ˆxy,则x=25...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 6.4.1《线性回归方程1》教案 苏教版必修3

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部