2.4二项分布教学目标:知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.授课类型:新授课.课时安排:1课时.教具:多媒体、实物投影仪.教学过程:一、复习引入:11.事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件.2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形.51.基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件.6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件.7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率.8.等可能性事件的概率公式及一般求解方法.9.事件的和的意义:对于事件A和事件B是可以进行加法运算的.10.互斥事件:不可能同时发生的两个事件.一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥.11.对立事件:必然有一个发生的互斥事件.12.互斥事件的概率的求法:如果事件彼此互斥,那么用心爱心专心1=.13.相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件.若与是相互独立事件,则与,与,与也相互独立.14.相互独立事件同时发生的概率:一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,.二、讲解新课:12.独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验.2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.它是展开式的第项.3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ01…k…nP……由于恰好是二项展开式中的各项的值,所以称这样的随机变量ξ服从二项分布(binomialdistribution),记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).三、讲解范例:例1.某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.(结果保留两个有效数字.)解:设X为击中目标的次数,则X~B(10,0.8).用心爱心专心2(1)在10次射击中,恰有8次击中目标的概率为P(X=8)=.(2)在10次射击中,至少有8次击中目标的概率为P(X≥8)=P(X=8)+P(X=9)+P(X=10).例2.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B(2,5%).所以,P(ξ=0)=(95%)=0.9025,P(ξ=1)=(5%)(95%)=0.095,P()=(5%)=0.0025.因此,次品数ξ的概率分布是ξ012P0.90250.0950.0025例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B.∴P(ξ=4)==,P(ξ=5)==.∴P(ξ>3)=P(ξ=4)+P(ξ=5)=.例4.某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中...