电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

概率论与数理统计 试题(含答案)VIP免费

概率论与数理统计 试题(含答案)_第1页
1/4
概率论与数理统计 试题(含答案)_第2页
2/4
概率论与数理统计 试题(含答案)_第3页
3/4
第一部分基本题一、选择题(共6小题,每小题5分,满分30分。在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分)1.事件表达式AB的意思是()(A)事件A与事件B同时发生(B)事件A发生但事件B不发生(C)事件B发生但事件A不发生(D)事件A与事件B至少有一件发生答:选D,根据AB的定义可知。2.假设事件A与事件B互为对立,则事件AB()(A)是不可能事件(B)是可能事件(C)发生的概率为1(D)是必然事件答:选A,这是因为对立事件的积事件是不可能事件。3.已知随机变量X,Y相互独立,且都服从标准正态分布,则X2+Y2服从()(A)自由度为1的2分布(B)自由度为2的2分布(C)自由度为1的F分布(D)自由度为2的F分布答:选B,因为n个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n的2分布。4.已知随机变量X,Y相互独立,X~N(2,4),Y~N(2,1),则()(A)X+Y~P(4)(B)X+Y~U(2,4)(C)X+Y~N(0,5)(D)X+Y~N(0,3)答:选C,因为相互独立的正态变量相加仍然服从正态分布,而E(X+Y)=E(X)+E(Y)=2-2=0,D(X+Y)=D(X)+D(Y)=4+1=5,所以有X+Y~N(0,5)。5.样本(X1,X2,X3)取自总体X,E(X)=,D(X)=2,则有()(A)X1+X2+X3是的无偏估计(B)是的无偏估计(C)是2的无偏估计(D)是2的无偏估计答:选B,因为样本均值是总体期望的无偏估计,其它三项都不成立。6.随机变量X服从在区间(2,5)上的均匀分布,则X的数学期望E(X)的值为()(A)2(B)3(C)3.5(D)4答:选C,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。二、填空题(共6小题,每小题5分,满分30分。把答案填在题中横线上)1.已知P(A)=0.6,P(B|A)=0.3,则P(AB)=__________答:填0.18,由乘法公式P(AB)=P(A)P(B|A)=0.60.3=0.18。2.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________答:填0.784,是因为三人都不中的概率为0.63=0.216,则至少一人中的概率就是10.216=0.784。3.一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____答:填0.25或,由古典概型计算得所求概率为。4.已知连续型随机变量则P{X1.5}=_______答:填0.875,因P{X1.5}。5.假设X~B(5,0.5)(二项分布),Y~N(2,36),则E(X+Y)=__________答:填4.5,因E(X)=50.5=2.5,E(Y)=2,E(X+Y)=E(X)+E(Y)=2.5+2=4.56.一种动物的体重X是一随机变量,设E(X)=33,D(X)=4,10个这种动物的平均体重记作Y,则《概率论与数理统计》试卷A卷第1页共4页D(Y)=________答:填0.4,因为总体X的方差为4,10个样本的样本均值的方差是总体方差的1/10。三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。由甲袋任取一个球放入乙袋,再从乙袋中取出一个球,求取到白球的概率。(10分)解:设从甲袋取到白球的事件为A,从乙袋取到白球的事件为B,则根据全概率公式有四、已知随机变量X服从在区间(0,1)上的均匀分布,Y=2X+1,求Y的概率密度函数。(10分)解:已知X的概率密度函数为Y的分布函数FY(y)为因此Y的概率密度函数为五、已知二元离散型随机变量(X,Y)的联合概率分布如下表所示:YX11210.10.20.320.20.10.1(1)试求X和Y的边缘分布率(2)试求E(X),E(Y),D(X),D(Y),及X与Y的相关系数XY(满分10分)解:(1)将联合分布表每行相加得X的边缘分布率如下表:X12p0.60.4将联合分布表每列相加得Y的边缘分布率如下表:Y112p0.30.30.4(2)E(X)10.6+20.4=0.2,E(X2)=10.6+40.4=2.2,D(X)=E(X2)[E(X)]2=2.20.04=2.16E(Y)10.3+10.3+20.4=0.8,E(Y2)=10.3+10.3+40.4=2.2D(Y)=E(Y2)[E(Y)]2=2.20.64=1.56E(XY)=(1)(1)0.1+(1)10.2+(1)20.3+2(1)0.2+210.1+220.1==0.10.20.60.4+0.2+0.40.5cov(X,Y)=E(XY)E(X)E(Y)0.50.160.66《概率论与数理统计》试卷A卷第2页共4页六、设某种电子管的使用寿命服从正态分布。从中随机抽取15个进行检验,算出平均使用寿命为1950小时,样本标准差s为300小时,以95%的置信概率估计整批电子管平均使用寿命的置信区间。(满分10分)解:已知样...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

概率论与数理统计 试题(含答案)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部