数学期望在实际生活中的应用摘要在现代快速发展的社会中,数学期望作为一门重要的数学学科,它是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述数学期望在实际生活中的应用包括经济决策、彩票抽奖、求职决策、医疗、体育比赛等方面的一些实例,体现出数学期望在实际生活中颇有价值的应用。通过探讨数学期望在实际生活中的应用,以起到让大家了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。所谓的求数学期望其实就是去求随机变量的以概率为权数的加权平均值,而平均值这一概念又是我们在实际应用中最常用的一个指标,在预测中使用是很具有科学性的。关键词:数学期望随机变量性质实际应用1数学期望在实际生活中的应用AbstractIntherapiddevelopmentofmodernsociety,themathematicalexpectationasanimportantmathematicalsubject,itisoneoftheimportantdigitalfeaturesofrandomvariables,isalsooneofthebasiccharacteristicsofrandomvariables.Throughseveralexamples,inthispaper,themathematicalexpectationinthepracticalapplicationoflifeincludingeconomicdecision-making,lotterytickets,job,health,sports,etc.Insomeinstances,manifeststhemathematicalexpectationvaluableapplicationinreallife.Throughdiscusstheapplicationofmathematicalexpectationinreallifetoplayleteverybodyunderstandtheknowledgeandpracticecloselylinkedhumanrichbackground,personalexperience"mathematicsreallyuseful".So-calledmathematicalexpectationistoactuallyaskforrandomvariablesoftheprobabilityweightedaverageoftheweight,andmeanvalueinactualapplicationofthisconceptisouroneofthemostcommonlyusedindicators,usedintheforecast,itisveryscientific.Keywords:MathematicalExpectation;StochasticVariable;quality;PracticalApplication2数学期望在实际生活中的应用目录摘要................................................................................................................................1Abstract..........................................................................................................................2第一章绪论...................................................................................................................41.1数学期望的起源及定义...................................................................................41.2数学期望的意义...............................................................................................5第二章数学期望前瞻...................................................................................................52.1离散型...............................................................................................................52.2连续型...............................................................................................................62.3随机变量的数学期望值...................................................................................72.4单独数据的数学期望的算法...........................................................................72.5数学期望的基本性质.......................................................................................8第三章数学期望在实际中的应用...............................................................................83.1经济决策中的应用...........................................................................................93.2彩票、抽奖问题...............................................................................................93.2.1彩票问题...........................................................................................