电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

屈婉玲高教版离散数学部分答案2 VIP免费

屈婉玲高教版离散数学部分答案2 _第1页
1/21
屈婉玲高教版离散数学部分答案2 _第2页
2/21
第七章部分课后习题参考答案7.列出集合A={2,3,4}上的恒等关系IA,全域关系EA,小于或等于关系LA,整除关系DA.解:IA={<2,2>,<3,3>,<4,4>}EA={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}LA={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>}DA={<2,4>}13.设A={<1,2>,<2,4>,<3,3>}B={<1,3>,<2,4>,<4,2>}求AB,AB,domA,domB,dom(AB),ranA,ranB,ran(AB),fld(A-B).解:AB={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>}AB={<2,4>}domA={1,2,3}domB={1,2,4}dom(A∨B)={1,2,3,4}ranA={2,3,4}ranB={2,3,4}ran(AB)={4}A-B={<1,2>,<3,3>},fld(A-B)={1,2,3}14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}求RR,R-1,R{0,1,},R[{1,2}]解:RR={<0,2>,<0,3>,<1,3>}R-1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}R{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>}R[{1,2}]=ran(R|{1,2})={2,3}16.设A={a,b,c,d},1R,2R为A上的关系,其中1R=,,,,,aaabbd2,,,,,,,Radbcbdcb求23122112,,,RRRRRR。解:R1R2={,,}R2R1={}R12=R1R1={,,}R22=R2R2={,,}R23=R2R22={,,}36.设A={1,2,3,4},在AA上定义二元关系R,,AA,〈u,v>Ru+y=x+v.(1)证明R是AA上的等价关系.(2)确定由R引起的对AA的划分.(1)证明: Ru+y=x-y∴Ru-v=x-yAA u-v=u-v∴R∴R是自反的任意的,∈A×A如果R,那么u-v=x-y∴x-y=u-v∴R∴R是对称的任意的,,∈A×A若R,R则u-v=x-y,x-y=a-b∴u-v=a-b∴R∴R是传递的∴R是A×A上的等价关系(2)∏={{<1,1>,<2,2>,<3,3>,<4,4>},{<2,1>,<3,2>,<4,3>},{<3,1>,<4,2>},{<4,1>},{<1,2>,<2,3>,<3,4>},{<1,3>,<2,4>},{<1,4>}}41.设A={1,2,3,4},R为AA上的二元关系,〈a,b〉,〈c,d〉AA,〈a,b〉R〈c,d〉a+b=c+d(1)证明R为等价关系.(2)求R导出的划分.(1)证明:R∴R是自反的任意的,∈A×A设R,则a+b=c+d∴c+d=a+b∴R∴R是对称的任意的,,∈A×A若R,R则a+b=c+d,c+d=x+y∴a+b=x+y∴R∴R是传递的∴R是A×A上的等价关系(2)∏={{<1,1>},{<1,2>,<2,1>},{<1,3>,<2,2>,<3,1>},{<1,4>,<4,1>,<2,3>,<3,2>},{<2,4>,<4,2>,<3,3>},{<3,4>,<4,3>},{<4,4>}}43.对于下列集合与整除关系画出哈斯图:(1){1,2,3,4,6,8,12,24}(2){1,2,3,4,5,6,7,8,9,10,11,12}解:1234681224123456789101112(1)(2)45.下图是两个偏序集的哈斯图.分别写出集合A和偏序关系R的集合表达式.abcdefgabcdefg(a)(b)解:(a)A={a,b,c,d,e,f,g}R={,,,,,,,,,}AI(b)A={a,b,c,d,e,f,g}R={,,,,,,}AI46.分别画出下列各偏序集的哈斯图,并找出A的极大元`极小元`最大元和最小元.(1)A={a,b,c,d,e}R={,,,,,,}IA.(2)A={a,b,c,d,e},R={}IA.解:abcdeabcde(1)(2)项目(1)(2)极大元:ea,b,d,e极小元:aa,b,c,e最大元:e无最小元:a无第八章部分课后习题参考答案1.设f:NN,且f(x)=12xxx,若为奇数若为偶数,求f(0),f({0}),f(1),f({1}),f({0,2,4,6,…}),f({4,6,8}),f-1({3,5,7}).解:f(0)=0,f({0})={0},f(1)=1,f({1})={1},f({0,2,4,6,…})=N,f({4,6,8})={2,3,4},f-1({3,5,7})={6,10,14}.4.判断下列函数中哪些是满射的?哪些是单射的?哪些是双射的?(1)f:NN,f(x)=x2+2不是满射,不是单射(2)f:NN,f(x)=(x)mod3,x除以3的余数不是满射,不是单射(3)f:NN,f(x)=10xx,若为奇数,若为偶数不是满射,不是单射(4)f:N{0,1},f(x)=01xx,若为奇数,若为偶数是满射,不是单射(5)f:N-{0}R,f(x)=lgx不是满射,是单射(6)f:RR,f(x)=x2-2x-15不是满射,不是单射5.设X={a,b,c,d},Y={1,2,3},f={,,,}判断以下命题的真假:(1)f是...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

屈婉玲高教版离散数学部分答案2

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部