第一节空间几何体及表面积与体积突破点一空间几何体1.简单旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到;(2)圆锥可以由直角三角形绕其直角边旋转得到;(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;(4)球可以由半圆或圆绕直径旋转得到.[提醒](1)球是以半圆面为旋转对象的,而不是半圆.(2)要注意球面上两点的直线距离、球面距离以及在相应的小圆上的弧长三者之间的区别与联系.2.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共点的三角形;(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形.[提醒](1)棱柱的所有侧面都是平行四边形,但侧面都是平行四边形的几何体却不一定是棱柱.(2)棱台的所有侧面都是梯形,但侧面都是梯形的几何体却不一定是棱台.(3)注意棱台的所有侧棱相交于一点.3.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.一、判断题(对的打“√”,错的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.()答案:(1)×(2)×(3)×二、填空题1.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤2.下列命题中正确的是________.1①由五个平面围成的多面体只能是四棱锥;②棱锥的高线可能在几何体之外;③仅有一组相对的面平行的六面体一定是棱台;④有一个面是多边形,其余各面是三角形的几何体是棱锥.答案:②3.一个棱柱至少有________个面;面数最少的一个棱锥有________个顶点;顶点最少的一个棱台有________条侧棱.答案:5434.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2cm2,则原平面图形的面积为________cm2.解析:依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的2倍,所以原平面图形的面积为8cm2.答案:81.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故正确命题的个数是1.2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④[方法技巧]辨别空间几何体的2种方法定义法紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定反例法通过反例对结构特征进行辨析,要说明一个结论是错误的,只需举出一个反例即2可[针对训练]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体...