§1.4简单的逻辑联结词、全称量词与存在量词考情考向分析逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为填空题,低档难度.1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断pqp且qp或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示.(2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x∈M,綈p(x)存在性命题存在M中的一个x,使p(x)成立∃x∈M,p(x)∀x∈M,綈p(x)概念方法微思考含有逻辑联结词的命题的真假有什么规律?提示p∨q:一真即真;p∧q:一假即假;p,綈p:真假相反.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.(√)(2)命题p和綈p不可能都是真命题.(√)(3)“全等三角形的面积相等”是存在性命题.(×)(4)命题綈(p∧q)是假命题,则命题p,q都是真命题.(√)题组二教材改编2.[P13习题T3]已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为________.答案2解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.[P16例1]命题“∃x∈N,x2≤0”的否定是____________.答案∀x∈N,x2>04.[P23测试T6]命题“对于函数f(x)=x2+(a∈R),存在a∈R,使得f(x)是偶函数”为________命题.(填“真”或“假”)答案真解析当a=0时,f(x)=x2(x≠0)为偶函数.题组三易错自纠5.命题“綈p为真”是命题“p∧q为假”的________条件.答案充分不必要解析由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假.故“綈p为真”是“p∧q为假”的充分不必要条件.6.下列命题中的假命题是________.(填序号)①∃x∈R,lgx=1;②∃x∈R,sinx=0;③∀x∈R,x3>0;④∀x∈R,2x>0.答案③解析当x=10时,lg10=1,则①为真命题;当x=0时,sin0=0,则②为真命题;当x<0时,x3<0,则③为假命题;由指数函数的性质知,∀x∈R,2x>0,则④为真命题.7.已知命题p:∀x∈R,x2-a≥0;命题q:∃x∈R,x2+2ax+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.答案(-∞,-2]解析由已知条件,知p和q均为真命题,由命题p为真,得a≤0,由命题q为真,得Δ=4a2-4(2-a)≥0,即a≤-2或a≥1,所以a≤-2.题型一含有逻辑联结词的命题的真假判断1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是________.(填序号)①p∨q;②p∧q;③(綈p)∧(綈q);④p∨(綈q).答案①解析如图所示,若a=A1A,b=AB,c=B1B,则a·c≠0,命题p为假命题;显然命题q为真命题,所以p∨q为真命题.2.设命题p:函数y=log2(x2-2x)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1),则下列命题中是真命题的为________.(填序号)①p∧q;②p∨q;③p∧(綈q);④綈q.答案②解析函数y=log2(x2-2x)的单调增区间是(2,+∞),所以命题p为假命题.由3x>0,得0<<1,所以函数y=的值域为(0,1),故命题q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q为假命题.3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中,正确的是________.(填序号)答案②解析命题p是假命题,这是因为α与γ也可能相交;命题q也是假命题,这两条直线也可能异面,相交.思维升华“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p...