电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课改省份专用)高考数学一轮复习 第八章 解析几何 第一节 直线与方程讲义(含解析)-人教版高三全册数学教案VIP免费

(新课改省份专用)高考数学一轮复习 第八章 解析几何 第一节 直线与方程讲义(含解析)-人教版高三全册数学教案_第1页
1/10
(新课改省份专用)高考数学一轮复习 第八章 解析几何 第一节 直线与方程讲义(含解析)-人教版高三全册数学教案_第2页
2/10
(新课改省份专用)高考数学一轮复习 第八章 解析几何 第一节 直线与方程讲义(含解析)-人教版高三全册数学教案_第3页
3/10
第一节直线与方程突破点一直线的倾斜角与斜率、两直线的位置关系1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l倾斜角的范围是[0,π).2.直线的斜率公式(1)定义式:若直线l的倾斜角α≠,则斜率k=tan_α.(2)两点式:P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率k=.3.两条直线平行与垂直的判定两条直线平行对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.当直线l1,l2不重合且斜率都不存在时,l1∥l2两条直线垂直如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔k1·k2=-1.当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1⊥l2一、判断题(对的打“√”,错的打“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.()(2)坐标平面内的任何一条直线均有倾斜角与斜率.()(3)直线的倾斜角越大,其斜率就越大.()(4)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.()(5)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()答案:(1)√(2)×(3)×(4)×(5)×二、填空题1.过点M(-1,m),N(m+1,4)的直线的斜率等于1,则m的值为________.答案:12.若直线l1:(a-1)x+y-1=0和直线l2:3x+ay+2=0垂直,则实数a的值为________.答案:3.(2019·湖南百所中学检测)若直线l1:ax+y-1=0与l2:3x+(a+2)y+1=0平行,则a的值为________.答案:14.直线x+(a2+1)y+1=0的倾斜角的取值范围是________.答案:考法一直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:1斜率kk=tanα>0k=0k=tanα<0不存在倾斜角α锐角0°钝角90°2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tanα的单调性,如图所示:(1)当α取值在内,由0增大到时,k由0增大并趋向于正无穷大;(2)当α取值在内,由增大到π(α≠π)时,k由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1](1)(2019·江西五校联考)已知直线l与两条直线y=1,x-y-7=0分别交于P,Q两点,线段PQ的中点坐标为(1,-1),那么直线l的斜率是()A.B.C.-D.-(2)(2019·张家口模拟)直线l经过A(2,1),B(1,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是()A.B.C.D.[解析](1)设P(a,1),Q(b,b-7),则解得所以P(-2,1),Q(4,-3),所以直线l的斜率k==-,故选C.(2)直线l的斜率k=tanα==m2+1≥1,所以≤α<.[答案](1)C(2)C[方法技巧]求直线倾斜角范围的注意事项直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论.由正切函数图象可以看出,当α∈时,斜率k∈[0,+∞);当α=时,斜率不存在;当α∈时,斜率k∈(-∞,0).考法二两直线的位置关系两直线位置关系的判断方法(1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等;②两直线垂直⇔两直线的斜率之积为-1.(2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x轴上的截距不相等时,两直线平行;否则两直线重合.[例2](1)(2019·武邑中学月考)已知过两点A(-3,m),B(m,5)的直线与直线3x+y-1=0平行,则m的值为()A.3B.7C.-7D.-9(2)(2019·安徽六安四校联考)设m∈R,则“m=0”是“直线l1:(m+1)x+(1-m)y-12=0与直线l2:(m-1)x+(2m+1)y+4=0垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析](1)由题可知,=-3,解得m=-7,故选C.(2)由直线l1与l2垂直可得(m+1)(m-1)+(1-m)·(2m+1)=0,解得m=0或m=1.所以“m=0”是“直线l1:(m+1)x+(1-m)y-1=0与直线l2:(m-1)x+(2m+1)y+4=0垂直”的充分不必要条件.故选A.[答案](1)C(2)A[方法技巧]由一般式方程确定两直线位置关系的方法直线方程l1:A1x+B1y+C1=0(A+B≠0)l2:A2x+B2y+C2=0(A+B≠0)l1与l2垂直的充要条件A1A2+B1B2=0l1与l2平行的充分条件=≠(A2B2C2≠0)l1与l2相交的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课改省份专用)高考数学一轮复习 第八章 解析几何 第一节 直线与方程讲义(含解析)-人教版高三全册数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部