微专题二数列通项公式的常用求法一、累加法、累乘法例1已知数列{an}满足an+1=an+2·3n+1,a1=3,则数列{an}的通项公式为________.答案an=3n+n-1解析由an+1=an+2·3n+1,得a2=a1+2×31+1,a3=a2+2×32+1,a4=a3+2×33+1,…,an=an-1+2×3n-1+1,累加可得an=a1+2×(31+32+…+3n-1)+(n-1),又a1=3,∴an=2·+n+2=3n+n-1(n=1时也成立).例2设数列{an}是首项为1的正项数列,且(n+1)a-na+an+1an=0(n=1,2,3,…),则它的通项公式是an=________.答案解析原递推式可化为:[(n+1)an+1-nan](an+1+an)=0, an+1+an>0,∴=,则=,=,=,…,=,累乘可得=,又a1=1,∴an=(n=1时也成立).跟踪训练1(1)在数列{an}中,a1=3,an+1=an+,则数列{an}的通项公式为an=_______.答案4-解析原递推式可化为an+1=an+-,则a2=a1+-,a3=a2+-,a4=a3+-,…,an=an-1+-,累加得an=a1+1-.故an=4-(n=1时也成立).(2)在数列{an}中,a1=1,an+1=2n·an,则an=______.答案解析a1=1,a2=2a1,a3=22a2,…,an=2n-1an-1,累乘得an=2·22·23·…·2n-1=,当n=1时也成立,故an=.二、换元法例3已知数列{an},其中a1=,a2=,且当n≥3时,an-an-1=(an-1-an-2),求通项公式an.解设bn-1=an-an-1,原递推式可化为bn-1=bn-2,{bn}是一个等比数列,b1=a2-a1=-=,公比为.∴bn=b1·n-1=n+1,故an-an-1=n,an-1-an-2=n-1,…,a3-a2=3,a2-a1=2,用累加法得an=-n,当n=1时也成立.跟踪训练2已知数列{an}中,a1=1,a2=2,当n≥3时,an-2an-1+an-2=1,求通项公式an.解当n≥3时,(an-an-1)-(an-1-an-2)=1,令bn-1=an-an-1,∴bn-1-bn-2=1,∴{bn}是等差数列,其中b1=a2-a1=1,公差为1,∴bn=n,∴b1+b2+…+bn-1=a2-a1+a3-a2+…+an-an-1=an-1,∴an-1=n(n-1),∴an=(n=1时也成立).三、构造等差数列求通项例4已知数列{an}满足an+1=3an+2·3n+1,a1=3,求数列{an}的通项公式.解an+1=3an+2·3n+1,两边同除以3n+1,得=+2,∴是以=1为首项,以2为公差的等差数列,∴=1+(n-1)×2=2n-1,∴an=(2n-1)·3n.例5若数列{an}中,a1=2且an=(n≥2),求它的通项公式an.解将an=两边平方整理,得a-a=3.数列{a}是以a=4为首项,3为公差的等差数列.故a=a+(n-1)×3=3n+1.因为an>0,所以an=.例6已知数列{an}中,a1=1,且当n≥2时,an=,求通项公式an.解将an=两边取倒数,得-=2,这说明是一个等差数列,首项是=1,公差为2,所以=1+(n-1)×2=2n-1,即an=.跟踪训练3(1)已知数列{an}满足an+1=3an+3n,且a1=1.①证明:数列是等差数列;②求数列{an}的通项公式.①证明由an+1=3an+3n,两边同时除以3n+1,得=+,即-=.由等差数列的定义知,数列是以=为首项,为公差的等差数列.②解由(1)知=+(n-1)×=,故an=n·3n-1,n∈N*.(2)已知数列{an}中,a1=1,an-1-an=anan-1(n≥2,n∈N*),则a10=________.答案解析易知an≠0, 数列{an}满足an-1-an=anan-1(n≥2,n∈N*),∴-=1(n≥2,n∈N*),故数列是等差数列,且公差为1,首项为1,∴=1+9=10,∴a10=.四、构造等比数列求通项例7已知数列{an}满足a1=1,an+1=3an+2,求数列{an}的通项公式.解由an+1=3an+2,可得an+1+1=3(an+1),又a1+1=2,∴{an+1}是以2为首项,以3为公比的等比数列,∴an+1=2·3n-1,∴an=2·3n-1-1.例8在数列{an}中,a1=-1,an+1=2an+4·3n-1,求通项公式an.解原递推式可化为an+1+λ·3n=2(an+λ·3n-1),①比较系数得λ=-4,①式为:an+1-4·3n=2(an-4·3n-1).则数列{an-4·3n-1}是一个等比数列,其首项为a1-4·31-1=-5,公比是2.∴an-4·3n-1=-5·2n-1,即an=4·3n-1-5·2n-1.例9数列{an}满足a1=2,an+1=a(an>0,n∈N*),则an=________.答案解析因为数列{an}满足a1=2,an+1=a(an>0,n∈N*),所以log2an+1=2log2an,即=2.又a1=2,所以log2...