电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课改省份专用)高考数学一轮复习 第四章 三角函数、解三角形 第六节 三角函数图象与性质的综合问题讲义(含解析)-人教版高三全册数学教案VIP免费

(新课改省份专用)高考数学一轮复习 第四章 三角函数、解三角形 第六节 三角函数图象与性质的综合问题讲义(含解析)-人教版高三全册数学教案_第1页
1/4
(新课改省份专用)高考数学一轮复习 第四章 三角函数、解三角形 第六节 三角函数图象与性质的综合问题讲义(含解析)-人教版高三全册数学教案_第2页
2/4
(新课改省份专用)高考数学一轮复习 第四章 三角函数、解三角形 第六节 三角函数图象与性质的综合问题讲义(含解析)-人教版高三全册数学教案_第3页
3/4
第六节三角函数图象与性质的综合问题三角函数的图象与性质是每年高考命题的热点,除考查基本问题外,还常涉及求参数范围问题,多为压轴小题;在综合问题中,常考查三角函数图象的变换和性质、三角恒等变换、零点、不等式等的交汇创新问题.三角函数图象与性质中的参数范围问题策略一:针对选择题特事特办,选择题中关于三角函数的图象和性质的问题是多年来高考的热点,三角函数试题常涉及函数y=Asin(ωx+φ)(ω>0,A>0)的图象的单调性、对称性、周期等问题.一般来说:(1)若函数y=Asin(ωx+φ)(ω>0,A>0)有两条对称轴x=a,x=b,则有|a-b|=+(k∈Z);(2)若函数y=Asin(ωx+φ)(ω>0,A>0)有两个对称中心M(a,0),N(b,0),则有|a-b|=+(k∈Z);(3)若函数y=Asin(ωx+φ)(ω>0,A>0)有一条对称轴x=a,一个对称中心M(b,0),则有|a-b|=+(k∈Z).策略二:研究函数在某一特定区间的单调性,若函数仅含有一个参数的时候,利用导数的正负比较容易控制,但对于函数y=Asin(ωx+φ)(ω>0,A>0)含多个参数,并且具有周期性,很难解决,所以必须有合理的等价转化方式才能解决.[典例](2016·全国卷Ⅰ)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为()A.11B.9C.7D.5[思路点拨]本题条件较多,事实上从题型特征的角度来看,若选择题的已知条件越多,那么意味着可用来排除选项的依据就越多,所谓正面求解也是在不断缩小的范围内与条件进行对比验证.[解题观摩]法一:排除法由f=0得,-ω+φ=kπ(k∈Z),φ=kπ+ω.当ω=5时,k只能取-1,φ=,f(x)=sin,则f=-1,x=是函数图象的对称轴,符合题意;当x∈时,5x+∈,这个区间不含π(n∈Z)中的任何一个,函数f(x)在上单调,符合题意.当ω=7时,k只能取-2,φ=-,f(x)=sin,则f=-1,x=是函数图象的对称轴,符合题意;当x∈时,7x-∈,这个区间含有,则函数f(x)在上不可能单调,不符合题意.当ω=9时,k只能取-2,φ=,f(x)=sin,则f=1,x=是函数图象的对称轴,符合题意;当x∈时,9x+∈,这个区间不含π(n∈Z)中的任何一个,函数f(x)在上单调,符合题意.当ω=11时,k只能取-3,φ=-,f(x)=sin,则f=1,x=是函数图象的对称轴,符合题意;当x∈时,11x-∈,这个区间含有,则函数f(x)在上不可能单调,不符合题意.综上,ω的最大值为9.故选B.法二:特殊值法从T=,ω=2k+1(k∈N)来思考,ω需要最大值,只有从选项中的最大数开始,即从前往后一一验证:当ω=11时,T=,从单调区间的一个端点x=往前推算,靠近的单调区间为,容易看出<<,不合题意;当ω=9时,T=,从单调区间的一个端点x=往前推算,靠近的单调区间为,,容易看出⊆,符合题意,故选B.法三:综合法由题意得且|φ|≤,则ω=2k+1,k∈Z,φ=或φ=-.对比选项,将选项值分别代入1验证:若ω=11,则φ=-,此时f(x)=sin,f(x)在区间上单调递增,在区间上单调递减,不满足f(x)在区间上单调;若ω=9,则φ=,此时f(x)=sin,满足f(x)在区间上单调递减.[答案]B[题后悟通]上述法一和法二的本质是一样的,都是针对选择题的做法,逐一验证,目标明确,不同的是验证的角度.法二直接利用y=Asin(ωx+φ)(ω>0,A>0)的单调区间的特征,每个区间长度为,从靠近区间的特殊极值点开始把可能出现的单调区间找出来比较,只要“所求区间包含在单调区间内”即可.[针对训练]1.(2019·丹东教学质量监测)若函数f(x)=2sin在区间和上都是单调递增函数,则实数x0的取值范围为()A.B.C.D.解析:选B由2kπ-≤2x+≤2kπ+(k∈Z)得kπ-≤x≤kπ+(k∈Z),在原点附近的递增区间为-,,,因此解得≤x0≤,故选B.2.已知函数f(x)=Asin(2x+φ)-的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈,都有m2-3m≤f(x),则实数m的取值范围为()A.B.[1,2]C.D.解析:选B 函数f(x)=Asin(2x+φ)-A>0,0<φ<的图象在y轴上的截距为1,∴Asinφ-=1,即Asinφ=. 函数f(x)=Asin(2x+φ)-的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,又0<φ<,∴φ=,∴A·sin=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课改省份专用)高考数学一轮复习 第四章 三角函数、解三角形 第六节 三角函数图象与性质的综合问题讲义(含解析)-人教版高三全册数学教案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部