聚酰亚胺(PI)是一种具有优异热稳定性、突出力学性能以及良好电学性能的高性能聚合物,广泛应用于航空航天、微电子、复合材料基体和非线性光学材料等领域。但普通的PI由于具有分子链规整性好、刚性大、链间相互作用力强等结构特点而难熔难溶,加工成型困难,应用受到限制。因此,在保持PI优良综合性能的同时,改善其加工性能所进行的可溶性PI研究,已成为目前PI功能化研究的热点之一。主要介绍近年来制备可溶性PI的研究进展,并在分子水平上探讨可溶性PI的结构特点。常用的制备可溶性PI的方法有:在主链上引入柔性基团、大的侧基、非共平面结构、含氟基团、不对称结构,共聚以及制备超支化PI等1合成方法1.1主链引入柔性基团在PI分子主链上引入醚键、硅氧键、羰基、砜基、亚异丙基和烷基基团等柔性基团可以降低链的内旋转能垒,增加链的柔顺性,减小分子链堆积,进而改善溶解性能,若含柔性团的单体同时含有大量苯环,单体内的大共轭体系未被破坏,则PI的热稳定性不会受到严重影响,其应用前景广阔。林志文等选用双酚-A二醚二酐(BPADA)和4,4'-二胺基二苯醚(ODA)为单体,间-甲酚为溶剂,用化学亚胺化法合成高分子量可溶性的PI(PI),得到的PI在极性溶剂NMP、DMAc、THF和DMF中有很好的溶解性胡晓阳利用4-十二烷氧基联苯酚-3,5-二氨基苯甲酸酯、3,3′-二甲基-4,4′-亚甲基二苯胺(DMMDA)按不同比例和4,4-氧双邻苯二甲酸酐(ODPA)通过一步法共聚合成一系列PI,该PI在N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAC)、二甲基亚砜(DMSO)以及氯仿(TCM)等溶剂中显示出良好的溶解性,并且显示出优异的垂直取向性能,即使摩擦以后所引起的预倾角也未出现显著的下降。在PI主链上引入亚甲基和醚键等柔性基团在一定程度上能提高其溶解性,但是随着柔性基团数目的增加,链的柔顺性和分子间排列的规整性增加,使分子间堆积紧密,溶解性反而会下降。所以过度增加主链柔性基团的数目不是提高PI溶解性的好方法。1.2主链引入大的侧基PI主链引入叔丁基、苯环或三氟甲基等大的侧基可以显著改善其溶解性。大侧基的引入使分子链间的距离增加,链间作用力减少,分子链本身发生扭曲,整个分子呈现立体不对称态,从而使PI的溶解性提高。此外,若侧基含有苯环,由于苯基共轭的结构特征,所得PI不仅溶解性提高,而且具有优异的热稳定性和光学性能。在PI单体中引入大体积侧基的方法有很多种,在二胺单体的苯环上引入甲基是其中较为简便的方法,其中尤以DMMDA最为经济。路庆华等采用邻甲苯胺和甲醛反应很方便地制得DMMDA,并与PMDA、ODPA及BTDA聚合得到3种能溶于NMP、DMAc及间甲酚的PI。其Tg在260~370℃之间,Td在520~540℃之间。但如果将DMMDA换成二氨基二苯甲烷(MDA),则3种PI均不溶。该类PI热稳定性好,生产成本低,工艺简单,值得深入研究,产业化前景较好。在PI分子链上引入功能性侧基,除增加了其溶解性外,往往还可以赋予PI以多方面的性能,扩大PI的应用范围。Choi等在PMDA上引入感光基团,与ODA聚合得到一种可溶性的正性光敏PI,感光前、后均溶于DMAc、DMSO、NMP等极性溶剂,感光后可用0.5%的NaOH水溶液显影。1.3主链引入非共平面结构PI分子链中引入非共平面扭曲结构,既不破坏PI分子链的刚性,又有效地降低了分子链间的相互作用、结晶能力以及溶解自由能,破坏了主链的规整性,分子间的自由体积增大,提高了分子的构象熵,进而溶剂分子容易扩散到分子链内部,使PI的溶解性能得到提高,而且其热稳定性及玻璃化转变温度均未受到影响。Banihashemi等合成了一种新的二酐BBTDA,并与PDA等聚合得到了一系列Tg在296℃以上的可溶性PI将叔丁基和咔唑环等大侧基或斯皮罗结构和三蝶烯等非共平面结构引入PI主链,对于提高PI的溶解性本质是一样的:都会使分子链扭曲,严重破坏其原来主链的规整性,而且这些结构的引入会使PI结构变得松散,便于溶剂分子的渗入,这两种方法异曲同工,都因此而大幅提高了PI的溶解性。1.4主链引入含氟基团将含氟基团尤其是三氟甲基基团引入分子主链可以得到一种具有很大发展潜力的PI材料。三氟甲基基团可以破坏主链的规整性,使分子链呈立体扭曲态,因此含氟PI可以溶于多种有机溶剂。另外...