《创新方案》届高考数学(理科)二轮专题突破预测演练提能训练(浙江专版):第1部分专题三第2讲高考中的数列解答题型(以年真题和模拟题为例,含答案解析)1.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{an}的通项公式;(2)求a1+a4+a7…++a3n-2.解:(1)设{an}的公差为d.由题意a=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),或d=-2.故an=-2n+27.(2)令Sn=a1+a4+a7…++a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而Sn=(a1+a3n-2)=(-6n+56)=-3n2+28n.2.已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).(1)求数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.解:(1) Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2),∴an=Sn-Sn-1=nan-n(n-1)-(n-1)an-1+(n-1)(n-2),即an-an-1=2.∴数列{an}是首项a1=1,公差d=2的等差数列,故an=1+(n-1)·2=2n-1,n∈N*.(2)由(1)知bn===-,∴Tn=b1+b2…++bn=+…+++=1-=.3.数列{an}的前n项和为Sn,且Sn=(an-1),数列{bn}满足bn=bn-1-(n≥2),且b1=3.(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}满足cn=an·log2(bn+1),其前n项和为Tn,求Tn.解:(1)对于数列{an}有Sn=(an-1),①Sn-1=(an-1-1)(n≥2),②由①-②得an=(an-an-1),即an=3an-1,n=1时,由S1=(a1-1),得a1=3,则an=a1·qn-1=3·3n-1=3n.对于数列{bn}有bn=bn-1-(n≥2),可得bn+1=bn-1+,即=.bn+1=(b1+1)n-1=4×n-1=42-n,即bn=42-n-1.(2)由(1)可知cn=an·log2(bn+1)=3n·log242-n=3n·log224-2n=3n(4-2n).Tn=2·31+0·32+(-2)·33…++(4-2n)·3n,③3Tn=2·32+0·33…++(6-2n)·3n+(4-2n)·3n+1,④由③-④得-2Tn=2·3+(-2)·32+(-2)·33…++(-2)·3n-(4-2n)·3n+1=6+(-2)(32+33…++3n)-(4-2n)·3n+1.则Tn=-3++(2-n)·3n+1=-+·3n+1.4.(·合肥模拟)已知数列{an}的前n项和为Sn,且2Sn+3=3an(n∈N*).(1)求数列{an}的通项公式;(2)设bn=,Tn=b1+b2…++bn,求证:Tn<(n∈N*).解:(1)当n=1时,2S1+3=3a1⇒a1=3;当n≥2时,2Sn+3=3an,2Sn-1+3=3an-1,∴2Sn-2Sn-1=3an-3an-1,即an=3an-1.∴数列{an}是以3为首项,3为公比的等比数列,∴数列{an}的通项公式为an=3n.(2)证明:由(1)得bn==(4n+1)n,∴Tn=b1+b2…++bn=5×1+9×2…++(4n-3)×n-1+(4n+1)n,①∴Tn=5×2+9×3…++(4n-3)×n+(4n+1)n+1,②由①-②得Tn=5×1+4-(4n+1)×n+1=+4-(4n+1)×n+1=+4·-(4n+1)×n+1=+2-(4n+1)×n+1.∴2Tn=7-(4n+7)×n.∴Tn=-(4n+7)×n<.5.已知数列{an}的各项都为正数,且对任意n∈N*,a=anan+2+k(k为常数).(1)若k=(a2-a1)2,求证:a1,a2,a3成等差数列;(2)若k=0,且a2,a4,a5成等差数列,求的值;(3)已知a1=a,a2=b(a,b为常数),是否存在常数λ,使得an+an+2=λan+1对任意n∈N*都成立?若存在,求出λ;若不存在,请说明理由.解:(1)证明:当k=(a2-a1)2时,在a=anan+2+k中,令n=1,得a=a1a3+(a2-a1)2,即a1a3-2a1a2+a=0.因为a1>0,所以a3-2a2+a1=0,即a2-a1=a3-a2,故a1,a2,a3成等差数列.(2)当k=0时,a=anan+2.因为数列{an}的各项都为正数,所以数列{an}是等比数列.设公比为q(q>0).因为a2,a4,a5成等差数列,所以a2+a5=2a4,即a1q+a1q4=2a1q3.因为a1>0,q>0,所以q3-2q2+1=0,解得q=1或q=或(舍去负值).所以=q=1或=q=.(3)存在常数λ=,使an+an+2=λan+1.证明如下:因为a=anan+2+k,所以a=an-1an+1+k,n≥2,n∈N*,所以a-a=anan+2-an-1an+1,即a+an-1an+1=anan+2+a.由于an>0,此等式两边同除以anan+1,得=,所以…===,即当n∈N*时,都有an+an+2=an+1.因为a1=a,a2=b,a=anan+2+k,所以a3=,所以==...