河南省开封市十七中高一数学《3.4.3利用对数函数单调性求函数定义域和值域》教案(必修一)基本知识:对数函数的定义、图象和性质基本技能:1、确定下列函数的单调区间(1)(2)2、已知函数在上是增函数,求实数的取值范围。3、已知函数在上是减函数,求实数的值。新|课|标|第|一|网第二部分走进课堂指出:这一节课我们研究利用对数函数的单调性求函数定义域和值域的问题。【探索新知】例1、求下列函数的定义域和值域(1)(2)(3)(4)变式:1、让对数的底数带有。例如:求的定义域。12、对例1(2)限制,求函数的值域。例如:求函数的值域。3、我们还可以联系二次函数和指数函数等,(1)求函数的定义域。(1)求函数的值域。若已知函数的定义域和值域,就有其逆向思维问题:例2、已知函数的定义域为R,求实数的取值范围。当然也可以让定义域不是R例如:已知函数的定义域为,求实数的值。例3、已知函数的值域为R,求实数的取值范围。2当然也可以让值域不是R例如:已知函数的值域为,求实数的值。我们还可以在已知函数的值域时,求函数的定义域。例如:已知函数的值域为,求这个函数的定义域(定义域有许多,要范围最大的一个)。反思总结:第三部分走向课外【课后作业】1、求下列函数的定义域(1)(2)2、求下列函数的值域(1)(2)(3)3、已知函数的值域为,求这个函数的定义域(若定义域有许多,要范围最大的一个)。4、已知函数的定义域为,求实数的值。5、已知函数的值域为,求实数的值。3