江西乐安一中高二数学教案:08两条直线的位置关系(一)【同步教育信息】一.教学内容:两条直线的位置关系(一)二.重点、难点:1.lAxByC11110:(AB12120)lAxByC22220:(AB22220)(1)llABAB121221//且ACACBCBC21121221,两式中至少有一个成立(简记为AABBCC121212)(2)ll12与重合ABABACACBCBC1221122112210(简记为AABBCC121212)(3)ll12与相交ABAB12210(4)llAABB12121202.交点:AxByCAxByC11122200ABAB12210两条直线相交,交点为(,)BCBCABABACACABAB12211221122112213.夹角:当ll12与不垂直时tan||ABABAABB122112124.距离:(1)点P(,)xy00到直线l:AxByC0的距离dpl(,)||AxByCAB0022(2)两平行直线l1:AxByC10,l2:AxByC201dllCCAB(,)||121222【典型例题】例1.已知三条直线xyxkykxy203040,,交于一点,求k。解:xyxky2030xkkykkl2311113()代入kkkk2311140即:27502kkkk521或(舍)k52例2.两直线laxbylaxyb124010::,()求满足下列条件的ab,。(1)lllA12111,(,)且过点(2)ll12//,且平行于l:xy230解:(1)aabab()1040abab2226或(2)11212aabab323例3.直线l过点A(11,),它被两平行直线l1:xy210,l2:xy230所截的线段的中点,在直线lxy310:上,求l解:lykx:11()xyykxxkkykkxyykxxy21011121214122301111()()所以中点(,)2121312kkkk代入l32kk2712或(舍)例4.直线l过点P(3,2)与两点A(,)12,B(7,4)等距的l的方程。解:l平行AB3410xyl过AB中点x3另解:设l:ykx23()dAldBl(,)(,)||||44142134341022kkkkkxyk不存在时,x3合题意。例5.求证:无论k为任何直线:()()()213110kxkyk必过一定点。解:由已知整理:kxyxy()()21311021031102323xyxyxyl过点(,)例6.求经过直线xyxy30280,的交点,且垂直于2360xy的直线。解:设l:()()2830xyxy()()()()()21830223101596430xyxy例7.正方形中心为点P(,)63,它的一边所在直线方程为:lxy151270:,求其它三边所在直线方程。解:与l平行的边所在直线为lxy15120:dpldpl(,)(,)1||||3036713303613197或lxy1512190:与l垂直的边ll23,:1250xyk172151310074||,kkk或llxyxy231251000125740、:,例8.过点P(4,5)且与两直线l1:3470xy,l2:12560xy的夹角相等的直线3方程。解:||||kkkk341341251125i.kkkkk341341251125无解。ii.kkkkkk341341251125799712,79730xy,9710xy例9.直线l过P(2,3)且被两平行直线lxy13470:,l2:3480xy所截,所截线段长为32,求l的方程。i.设l:ykx32()llAkkkkllBkkkk1285439438204391443(,)(,)||,ABkk3217712ii.dll()123l与ll12成角为45(图示)13413417771907170|()()|kkkkxyxy或【模拟试题】1.若过P(2,m),Q(m,4)的直线倾斜角为4,则m()A.1B.4C.1或3D.1或42.已知方程axy||0和xya0()a0所确定的曲线有两个交点,则a的取值范围是()A.a1B.011aa或C.01aD.a03.A、B、C为三角形的三个内角,它们的对边分别为abc、、已知原点到直线xAyBCsinsinsin0的距离大于1,则此三角...