百度文库、教学资料教学资料----教案、教学设计第五章5.3.2命题、定理、证明知识点1:命题判断一件事情的语句,叫命题.它必须对某件事情作出判断,要么肯定,要么否定,而像“你回家了吗”“画AB∥CD”等等就不是命题.知识点2:命题的组成命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.它通常可以写成“如果⋯⋯那么⋯⋯”的形式,“如果”后面接的是题设,“那么”后面接的是结论.如果一个命题是正确的,那么它就是真命题,反之就是假命题.知识点3:定理经过推理证实而得到的真命题叫做定理.注意:理解命题的概念时要注意两点:(1)命题必须是一个完整的句子;(2)这个句子必须对某件事情给出明确的判断(如肯定或否定的判断).知识点4:证明一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明.考点1:如果⋯⋯那么⋯⋯【例1】把下列命题改写成“如果⋯⋯那么⋯⋯”的形式.(1)同位角相等;(2)等角的补角相等.解:(1)如果两个角是同位角,那么这两个角相等.(2)如果两个角是相等的角,那么这两个角的补角相等.考点2:举反例【例2】请判断命题“若a,b互为相反数,则a≠b”是真命题还是假命题?如果是假命题,举出反例说明.百度文库、教学资料教学资料----教案、教学设计解:假命题.因为0的相反数是0,而0=0,所以此命题是假命题.点拨举反例是说明一个命题是假命题常用的方法,所列举的反例满足命题的题设部分,不满足命题的结论即可.考点3:利用辅助线进行证明【例3】如图,AB∥CD.AF、CF分别是∠EAB、∠ECD的角平分线,F是两条角平分线的交点.求证:∠F=∠AEC.解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥CD.∴∠MEA=∠BAE,∠MEC=∠DCE.∴∠MEA+∠MEC=∠BAE+∠DCE,即∠AEC=∠BAE+∠DCE.同理可得∠AFC=∠BAF+∠DCF.∵AF、CF分别是∠EAB、∠ECD的平分线,∴∠BAF=∠BAE,∠DCF=∠DCE.∴∠AFC=∠BAE+∠DCE.∴∠AFC=∠AEC,即∠F=∠AEC.点拨:作辅助线,可以探究:∠AEC与∠BAE及∠DCE之间的关系,结合角的平分线的性质,可以探究出∠F与∠AEC之间的关系.