八年级暑假专题21一、教学内容:勾股定理的应用1、圆柱侧面上两点间的距离2、两线段是否垂直3、勾股定理与方程思想、数形结合思想的应用。二、教学目标1、掌握利用勾股定理解决圆柱侧面上两点间的距离的方法。2、能利用勾股定理的逆定理判断两条线段是否垂直。3、会把勾股定理与方程思想结合起来解决相应的实际问题。4、掌握利用勾股定理及数形结合思想解决物品安置问题。三、知识要点分析1、圆柱侧面上两点间的距离问题(这是重点)平面内两点之间,线段最短,即两点之间的所有连线中,最短路线是两点之间的线段。但对于立体图形如圆柱体来说,两点之间的连线绝大部分是曲线,而解决圆柱侧面上两点间的距离时,需将圆柱的侧面展开成一个长方形,构造直角三角形,利用勾股定理来求。2、两线段是否垂直(这是重难点)判断两条线段是否垂直的方法较多,本节重点是利用直角三角形的判别条件来判断,即以已知两线段为边构造一个三角形。根据三边的长度,利用勾股定理的逆定理解题,解题时注意将实际问题转化为数学问题,将其中的数量关系归纳为直角三角形中各元素之间的关系。3、勾股定理与方程思想、数形结合思想的应用勾股定理与方程思想、数形结合思想相结合的实际问题比较多,例如航海问题、折叠问题、物品安置问题、测量问题等等,都需要把勾股定理运用到方程思想、数形结合思想中。【典型例题】考点一:圆柱侧面上两点间的距离例1:请阅读下列材料:问题:如图,一圆柱的底面半径及高AB均为5dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线。小明设计了两条路线:路线1:侧面展开图中的两端AC。如下图(2)所示:设路线1的长度为,则路线2:高线AB+底面直径BC。如上图(1)所示:设路线2的长度为,则1l222222215(5)2525lACABBC2l225)105()(2222ACABl八年级暑假专题22∴∴所以选择路线2较短。(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm,高AB为5dm”继续按前面的路线进行计算。请你帮小明完成下面的计算:路线1:____________;路线2:__________ ∴(填>或<)所以应选择路线____________(填1或2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到C点的路线最短。【思路分析】本题是阅读理解题,题目信息量大,认真阅读从中找出做题的思想和方法,利用图形的展开与勾股定理进行求解.解:(1)线路1:线路2:36 ∴(填>或<)所以应选择路线___1_(填1或2)较短.(2)线路1:线路2:∴(填>或<)所以应选择路线___1_(填1或2)较短.方法与规律总结:学会正确应用勾股定理,解决实际应用问题,学会处理信息和收集信息的能力.例2:如图,一架长5米的梯子,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识论证你的结论.【思路分析】下滑前后梯子的长度是不变的.梯子滑动前后底端与墙底的距离用勾股定理可以求得.解:是.在Rt△ACB中,BC=3,AB=5,AC2=AB2-BC2=42,AC=4米,DC=4-1=3.在Rt△DCE中:DC=3,DE=5,CE2=DE2-DC2=42,CE=4米.BE=CE-CB=1.即梯子底端也滑动了1米.方法与规律:学会画草图.画草图的过程实际就是将实际问题转化为数学问题的过程,即222212252522525200llQ225(8)02221ll21ll221ACl222)(ACABl2221_____ll21_____ll221ACl225222)(ACABl2212ll12ll221ACl222hr222)(ACABl2()hr22212(2)0llrrhrQ12llAB八年级暑假专题23数学建模过程,利用直角三角形求线段长。考点二:线段是否垂直的问题例3:小月同学根据印度数学家什迦罗(1141年-1225年)曾提出的“荷花问题”编了一道“新荷花问题”:“平平湖水清可鉴,某处湖底生有莲,湖水深知3.75尺,面上红莲有半尺;忽被强风吹一边,渔人观看忙向前,花离原位二尺远,恰露花朵在水面;此莲出泥而不染,是否亭亭立湖间?【思路分析】首先要根据题意画出图形,构造成三角形,利用三角形的三边关系确定三角形是否是直角三角形,从而说明花是否与湖面垂直。解:根据题意画图如下:BD=0.5尺,BC=3.75尺,AC=BD+BC=0.5+3.75=4.25尺,AB=2尺...