电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

清华炉气化技术VIP免费

清华炉气化技术_第1页
1/11
清华炉气化技术_第2页
2/11
清华炉气化技术_第3页
3/11
“清华炉”煤气化技术技术拥有单位:清华大学“清华炉”煤气化技术是清华大学研究开发,联合北京达立科科技有限公司和山西阳煤丰喜肥业(集团)股份有限公司实现工业化的具有自主知识产权的煤气化工艺。清华炉气化工艺不仅包括了自主创新的气化炉,还包括气化工艺全流程的优化、配套技术的创新,因而改善了气化炉的煤种适应性、提高了气化系统的稳定性和可靠性、降低气化岛的能耗,综合形成以自主创新的“清华炉”为核心的经济型气流床气化技术体系。“清华炉”产学研三方顺利走过了专利研究、数学模型研究、实验室冷热态研究、小试、工艺包开发和工业装置设计和开车的全过程。针对目前大规模气化技术,包括水煤浆气化和干粉气化、耐火砖结构与水冷部结构、激冷流程与废锅流程、用于发电和用于化工等,在仔细调研综合分析的基础上,从可靠性和运行的经济性角度出发,基于对气化反应过程控制因素深入分析及其热过程深刻理解,清华大学创新性地将燃烧领域的分级送风概念和立式旋风炉的结构引入到煤气化中,将热能工程领域的自然循环和膜式水冷壁凝渣保护原理扩展到煤气化领域,提出了分级供氧水煤浆气化技术和水煤浆水冷壁清华炉煤气化技术。与其它气化技术主要是由化工反应器发展而来的不同,清华大学的研究是从锅炉燃烧演化而来的。清华炉煤气化技术的核心思想是来源于煤粉锅炉当中的空气分级供给、本质安全的自然循环原理、膜式水冷壁凝渣保护原理、立式旋风液态排渣煤粉燃烧、液态渣的粒化、水煤浆燃烧以及油的雾化等,结构处理上借鉴了锅炉的水冷壁及卫燃带结构和绝热炉膛结构,因此具有鲜明的动力设备特点。一气化技术特点1.1分级给氧清华炉煤气化技术气化炉喷嘴附近温度是由燃料量和氧气量及其混合效果决定的。正如煤粉燃烧器一样,采用分级供氧,可以抑制喷嘴出口火焰温度。像锅炉空气分级一样,沿燃料流动方向的合适位置上再补充氧气,提高温度促进气化反应,形成熔渣,以此改善喷嘴的寿命。由于氧气分级供给,气化炉主喷嘴供氧量与反应需氧化学当量脱离约束,减少了主喷嘴的氧气负荷,改善了主喷嘴的工作环境,延长了其运行周期。在此过程中,燃料的热量释放和氧气的供给时间相匹配,气化室沿流动方向的温度分布更合理,从喷嘴向下形成低—高—低温度曲线,见图1,高温区从喷嘴端部下移,喷嘴处于相对低的温度区域,并提高了出渣口区域的温度,同时提高了气化室内平均温度,使气化的效果得到改善。由于氧气分级供给,比不分级气化炉轴向温度均衡,长径比可加大,突破了国内外关于水煤浆气化室的截面出力的限制。从图1还可以看出,在同样氧煤比的情况下,分级供氧气化室排渣口的温度比只有主喷嘴供氧时要高,因而可以放宽对煤种灰熔点的要求,煤种适应性宽,可采用的煤种的灰熔点比传统工艺约高100K,扩大了气化炉煤种的适应性。事实上,该技术可以采用水煤浆进料,也可以干煤粉进料。分级供氧气化炉的流场更为合理。由于二次供氧在氧气入口处形成反扩散火焰,氧气进入了气化室顶部区域。传统的气化炉没有水平方向的供氧,在气化室顶部形成了缺氧区,该区域气化反应很弱,分级供氧工艺的二次供氧反扩散火焰的卷吸,使部分煤颗粒和氧进入气化室顶部区域。这一流场结构,恰到好处又充分地利用了气化室顶部区域,作为反应空间,而又不过度反应而影响气化室顶部砖的寿命。由于水平方向只有质量很小的氧气射流,在向下主气流作用下,即使水平方向氧气流速达到160ms-1也不会射到对面炉壁;水平方向射流中没有固体煤颗粒射入,只从主气流中卷吸部分煤颗粒参与燃烧和气化,不会产生过度高温威胁气化室顶部砖。以上两方面使分级供氧工艺具有固有安全性。这一点也在工业生产中得到验证:不投入二次供氧时,气化室顶部砖上附有厚厚的高低不平蜂窝状渣层,投入二次供氧以后,气化室顶部砖上附有致密均匀的渣层。1.2水煤浆水冷壁清华炉煤气化技术现有的气流床气化技术从进料上包括干法和水冷壁两种,从承压壳体的保护方式上有耐火砖结构和水冷壁结构。理论上可以有进料和保护方式可以有多种组合,但实际中都是水煤浆与耐火砖结合、干法与水冷壁结合。清华大学热能工程系大胆创新,依据...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

清华炉气化技术

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部