下载后可任意编辑复数的代数运算教案复数的代数运算教案1教学目标(1)把握复数加法与减法运算法则,能熟练地进行加、减法运算;(2)理解并把握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;(3)能初步运用复平面两点间的距离公式解决有关问题;(4)通过学习-平行四边形法则和三角形法,培育学生的数形结合的数学思想;(5)通过本节内容的学习,培育学生良好思维品质(思维的严谨性,深刻性,灵活性等).教学建议一、知识结构二、重点、难点分析本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不轻易接受。下载后可任意编辑三、教学建议(1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当时,与实数加法法则一致;②验证实数加法运算律在复数集中仍然成立;③符合向量加法的平行四边形法则.(2)复数加法的向量运算讲解设,画出向量,后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量),画出向量后,问与它对应的复数是什么,即求点Z的坐标OR与RZ(证法如教材所示).(3)向学生介绍复数加法的三角形法则.讲过复数加法可按向量加法的平行四边形法则来进行后,可以指出向量加法还可按三角形法则来进行:如教材中图8-5(2)所示,求与的和,可以看作是求与的和.这时先画出第一个向量,再以的终点为起点画出第二个向量,那么,由第一个向量起点O指向第二个向量终点Z的向量,就是这两个向量的和向量.(4)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当与在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释轻易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便.下载后可任意编辑(5)讲解了教材例2后,应强调(注重:这里是起点,是终点)就是同复数-对应的向量.点,之间的距离就是向量的模,也就是复数-的模,即.例如,起点对应复数-1、终点对应复数的那个向量(如图),可用来表示.因而点与()点间的距离就是复数的模,它等于。教学设计示例复数的减法及其几何意义教学目标1.理解并把握复数减法法则和它的几何意义.2.渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力.3.培育学生良好思维品质(思维的严谨性,深刻性,灵活性等).教学重点和难点重点:复数减法法则.难点:对复数减法几何意义理解和应用.教学过程设计(一)引入新课上节课我们学习了复数加法法则及其几何意义,今日我们讨论的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义)下载后可任意编辑(二)复数减法复数减法是加法逆运算,那么复数减法法则为(i)(i)=()()i,1.复数减法法则(1)规定:复数减法是加法逆运算;(2)法则:(i)(i)=()()i(,,,∈R).把(i)(i)看成(i)(1)(i)如何推导这个法则.(i)(i)=(i)(1)(i)=(i)(i)=()()i.推导的想法和依据把减法运算转化为加法运算.推导:设(i)(i)=i(,∈R).即复数i为复数i减去复数i的差.由规定,得(i)(i)=i,依据加法法则,得()()i=i,依据复数相等定义,得故(i)(i)=()()i.这样推导每一步都有合理依据.我们得到了复数减法法则,两个复数的差仍是复数.是确定的复数.复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(i)±(i)=(±)(±)i.(三)复数减法几何意义我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么?设z=i(,∈R),z1=i(,∈R),对应向量分别为,如图下载后可任意编辑由于复数减法是加法的逆运算,设z=()()i,所以zz1=z2,z2z1=z,由复数加法几何意义,以为一条对角线,1为一条边画平行四边形,那么这个平行四边形的另一边2所表示的向量OZ2就与复数zz1的差()()i对应,如图.在这个平行四边形中与zz1差对应的向量是只有向量2吗?还有.因为OZ2Z1Z,所以向量,也与zz1差对应.向量是以Z1为起点,Z为终点的向量....