电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学文科新课 函数的周期性 人教版VIP免费

高三数学文科新课 函数的周期性 人教版_第1页
1/6
高三数学文科新课 函数的周期性 人教版_第2页
2/6
高三数学文科新课 函数的周期性 人教版_第3页
3/6
高三数学文科新课函数的周期性一.本周教学内容:函数的周期性(一)概念对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,都成立,则把函数叫做周期函数,不为零的常数T叫做这个函数的周期,如果在所有的周期中存在着一个最小的正数,这个最小的正数叫最小正周期。注:(1)周期函数的周期T未必是正数未必有正周期如:,显然是函数的一个周期,故,是周期函数,假设有一个正周期,当时,,故无意义,所以不存在正周期。(2)若T是周期函数的周期,未必是函数的一个周期,但若是定义在R上的周期函数,则成立。如,是函数的一个周期,而不是周期。(3)有正周期的周期函数,未必有最小正周期如任一有理数是的一个周期,因有理数不存在最小正数,故所给函数不存在最小正周期。(4)周期函数的周期不止一个事实上,如果T是周期函数的周期,用数学归纳法易证()也是的周期,换言之,一个周期函数必有其周期集合,且此集合是一个至少一方无界的无穷点集。(5)周期函数的定义域至少是一方无界因函数的周期集合是定义域的子集,由(4)知周期集合至少一方无界,故定义域至少一方无界。(6)周期函数的定义域内的点不一定是连续的,可能是有间断的,如函数是周期函数,定义域是整数集。(7)两个周期函数的和未必是周期函数如,假设是以T为周期的周期函数则,对任恒成立令代入上式,有 ∴于是矛盾,故非周期函数(二)性质1.设是以T为周期的函数,证明(1)对任意正整数,也是的周期(2)有最小正周期T,则的所有周期都是T的整数倍注:若是定义在R上的周期函数,则(1)中证:(1)(2)设是的任意一个周期,且,则存在,使()若,则,即也是正周期,而与T的最小性矛盾,故2.(1)若是数集A上的周期函数,则是数集上的周期函数(2)若有最小正周期T,则T也是函数的最小正周期证:(1)设T为周期,则任,,且有从而,即T是的周期。(2)由(1)知T也是的正周期,假设T不是的最小正周期,则存在是的周期,即即也是的周期,且为正数,这与T是的最小正周期矛盾,所以T也是的最小正周期3.函数以T为最小正周期函数以为最小正周期证(充分性)设是的最小正周期,令,则∴∴假设T不是的最小正周期,若存在是的周期,则即是函数的周期与已知是最小正周期矛盾,得证(必要性)仿充分性证明,略。4.(1)设是定义在数集A上的函数,是数集B上的周期函数,且,则复合函数为B上的周期函数。证明:设T是()的周期,则对任意,且,有,从而即为B上周期函数推论:若是周期函数,则,,()仍为周期函数(2)若T是的最小正周期,则复合函数的最小正周期如复合函数为周期函数,且最小正周期,而最小正周期,(3)若是数集A上具一一映射的函数,是数集B上具有最小正周期T的函数,则T也是复合函数的最小正周期。证:由(1)T也是复合函数的周期,假设T不是的最小正周期,则存在为的周期,即对任,有而在A上具有一一映射,则,即是函数的周期,这与T是的最小正周期矛盾得证。(4)设与是数集A上分别以T1和T2为正周期的函数,且(),则它们的和、差、积是A上以(或)为周期的周期函数证:但是,如果与分别是与的最小正周期,那么与的最小公倍数不一定是,的最小正周期,如与的最小正周期都是,显然,最小公倍数是,并不是的最小正周期又如的最小正周期是,显然不是的最小正周期(5)对于定义在R上的函数,若总有(),则是以为一个周期的周期函数,反之,若为函数的一个周期,则必有推论:对于定义在R上的函数,且,若有总成立,则是以为一个周期的周期函数证:()对,令,那么,则有(数代换,令代代入即得证)【模拟试题】1.已知为非零常数(1)设,求证是周期函数(2)设,求证是周期函数2.已知是定义在R上的函数,且,求的值。3.已知函数定义域为R,且对于的任意一个值都有,求证是周期函数。4.对任意整数,且,,求的值。5.函数在R上有意义,满足(1)为偶函数,且,(2)为奇函数,试求的值。6.已知定义在R上的奇函数满足,且,则方程在区间(0,10)内实根的个数为()A.2B.3C.9D.77.定义在R上的偶函数恒有成立,且当时,则当时,()A.B.C.D.8.设,是定义在实数集R上的函数,对一...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学文科新课 函数的周期性 人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部