江西乐安一中高二数学教案:07直线的倾斜角和斜率【同步教育信息】一.教学内容:含绝对值不等式二.重点、难点:1.利用绝对值不等式证明不等式。abababaaaaaann1212……2.yxaxbab()的函数图象yxaxbabxbabbaxaba22()[](),,,最小值为ab,图象为一条折线。3.解不等式:ifxaa()()0fxa()或fxa()iifxaa()()0afxa()iiifxgx()()fxgxgxfxgxfx220()()[()()][()()]转换成高次不等式ivfxgx()()fxfxgxfxfxgx()()()()()()00或【典型例题】例1.abc、、,,()()00,求证:abacbc2222左abacabacbcbcabbc222222222222()若bc0不等式显然成立。若bc0左bcbcbcbcbcbcbc例2.ab,求证:ababababi若ab0显然成立iiabababababababab222222222222ab01()()()abababababab2222224()()()abababababab2222224abababababab显然成立例3.求证:abaab2222证:iab时,显然成立iiab左abababababababab()()1111112ababababab例4.解不等式xx5231解:xxxxxxxxx325231325523155231()()()()()或或得x()(),,713例5.不等式xxa43的解集为A,若A,求a的取值范围。解:作函数yxxxxxxx43271274343()[](),,,的图象yxya341a1含绝对值不等式解不等式:2例6.342xx解:()()34222xx()()()()()()(][][)xxxxxxxxx2243430141404114,,,例7.xx211111111101222xxxxxxRxx()01,例8.xxx22解:xxxxxxxxxx2222202202或()()()()()[)()()xxxxxxxx21022102201231131222或,,,【模拟试题】1.不等式xaxxxbxx2211的解为()(),,131,求a、b.2.关于x的不等式()aaax212的解为A,且满足A()1,,求a取值范围。3.如果不等式组xxxmxm226022770()的整数解只有3,求m的取值范围。【试题答案】1.解:xRxxxx2211,恒为正xaxxxbxx)()()()22113得()()()202abxabxab依题意()()()202abxabxab的根为131,20211321135232abababababab2.解:(1)aaa21101()(),,iaAR(),0不合题意iiaxaaa()log()1221,A()1,loglog()()()aaaaaaa22112211a(]1352,(2)aa211a0或a1iaAR0舍iia1A合题意(3)011012aaa(),xaaalog()212(舍)a[]1352,3.解:xxxxm23270或()()(1)mxxmx7223723或(舍)(2)mxxxm722372或im2解为()72323,mmmii2332mm4解为()722,合题意iii3443mm解为()()7223,,m综上所述m[)()4333,,5