下载后可任意编辑2024南京市高二数学教案最新2024南京市高二数学教案1学习目标:1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示重点:能够把一个随机试验结果用随机变量表示难点:随机事件概念的透彻理解及对随机变量引入目的的认识:环节一:随机变量的定义1.通过生活中的一些随机现象,能够概括出随机变量的定义2能叙述随机变量的定义3能说出随机变量与函数的区别与联系一、阅读课本33页问题提出和分析理解,回答下列问题?1、了解一个随机现象的规律具体指的是什么?2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?总结:下载后可任意编辑3、随机变量(1)定义:这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的到的映射。(2)表示:随机变量常用大写字母.等表示.(3)随机变量与函数的区别与联系函数随机变量自变量因变量因变量的范围相同点都是映射都是映射环节二随机变量的应用1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果下载后可任意编辑例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变量,分别说明下列集合所代表的随机事件:(1){X=0}(2){X=1}(3){X0}变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;小结(对标)最新2024南京市高二数学教案2教学准备教学目标一、知识与技能(1)理解并掌握弧度制的定义;(2)领悟弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公下载后可任意编辑式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法二者是辨证统一的,而不是孤立、割裂的关系.二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领悟定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.三、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.教学重难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.下载后可任意编辑教学工具投影仪等教学过程一、创设情境,引入新课师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采纳的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制我们已经不再陌生,另外一个就是我们这节课要讨论的角的另外一种度量制---弧度制.二、讲解新课1.角度制规定:将一个圆周分成360份,...