真题感悟·考点整合真题感悟·考点整合热点聚焦·题型突破热点聚焦·题型突破归纳总结·思维升华归纳总结·思维升华真题感悟1.(2017·全国Ⅲ卷文)设数列{an}满足a1+3a2+…+(2n-1)an=2n.(1)求{an}的通项公式;(2)求数列an2n+1的前n项和.解(1)当n=1时,a1=2又因为a1+3a2+…+(2n-1)an=2n,①故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1),②①-②得(2n-1)an=2,an=22n-1,又a1=2满足an=22n-1,从而{an}的通项公式为an=22n-1.(2)记an2n+1的前n项和为Sn,由(1)知an2n+1=2(2n-1)(2n+1)=12n-1-12n+1,则Sn=1-13+13-15+…+12n-1-12n+1=1-12n+1=2n2n+1.真题感悟·考点整合真题感悟·考点整合热点聚焦·题型突破热点聚焦·题型突破归纳总结·思维升华归纳总结·思维升华题型一:分组转化求和例1求和)()2()1()3(2naaan)532()534()532()2(21nn]211)-(2n[1617815413211)1(n例2Sn为数列{an}的前n项和.已知an>0,a2n+2an=4Sn+3.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和.解(1)由a2n+2an=4Sn+3,可知a2n+1+2an+1=4Sn+1+3.两式相减可得a2n+1-a2n+2(an+1-an)=4an+1,即2(an+1+an)=a2n+1-a2n=(an+1+an)(an+1-an).由于an>0,可得an+1-an=2.又a21+2a1=4a1+3,解得a1=-1(舍去),a1=3.所以{an}是首项为3,公差为2的等差数列,通项公式为an=2n+1.(2)由an=2n+1可知bn=1anan+1=1(2n+1)(2n+3)=1212n+1-12n+3.设数列{bn}的前n项和为Tn,则Tn=b1+b2+…+bn=1213-15+15-17+…+12n+1-12n+3=n3(2n+3).真题感悟·考点整合真题感悟·考点整合热点聚焦·题型突破热点聚焦·题型突破归纳总结·思维升华归纳总结·思维升华例2Sn为数列{an}的前n项和.已知an>0,a2n+2an=4Sn+3.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和.题型二:裂项相消法求和真题感悟·考点整合真题感悟·考点整合热点聚焦·题型突破热点聚焦·题型突破归纳总结·思维升华归纳总结·思维升华尝试练习等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求1S1+1S2+…+1Sn.探究提高1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练1】(2017·昆明诊断)已知等比数列{an}的各项均为正数,且a1+2a2=5,4a23=a2a6.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;(3)设cn=anbnbn+1,求数列{cn}的前n项和为Tn.解(1)设等比数列{an}的公比为q,由4a23=a2a6得4a23=a24所以q2=4,由条件可知q>0,故q=2,由a1+2a2=5得a1+2a1q=5,所以a1=1,故数列{an}的通项公式为an=2n-1.(2)由bn+1=bn+an得bn+1-bn=2n-1,故b2-b1=20,b3-b2=21,…,bn-bn-1=2n-2,以上n-1个等式相加得bn-b1=1+21+…+2n-2=1·(1-2n-1)1-2=2n-1-1,由b1=2,所以bn=2n-1+1.(3)cn=anbnbn+1=bn+1-bnbnbn+1=1bn-1bn+1,所以Tn=c1+c2+…+cn=1b1-1b2+1b2-1b3+…+1bn-1bn+1=1b1-1bn+1=12-12n+1.真题感悟·考点整合真题感悟·考点整合热点聚焦·题型突破热点聚焦·题型突破归纳总结·思维升华归纳总结·思维升华思维升华常用的裂项公式①若{an}是等差数列,则1anan+1=1d1an-1an+1,1anan+2=12d1an-1an+2;②1nn+1=1n-1n+1,1nn+k=1k1n-1n+k;③12n-12n+1=1212n-1-12n+1;④1nn+1n+2=121nn+1-1n+1n+2;⑤1n+n+1=n+1-n,1n+n+k=1k(n+k...