1/2四点共圆判定定理1:若两个直角三角形共斜边,则四个顶点共圆,且直角三角形的斜边为圆的直径.判定定理2:共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆.判定定理3:对于凸四边形ABCD,若对角互补,则A、B、C、D四点共圆.判定定理4:相交弦定理的逆定理:对于凸四边形ABCD其对角线AC、BD交于P,若PA·PC=PB·PD,则A、B、C、D四点共圆。判定定理5:割线定理的逆定理:对于凸四边形ABCD两边AB、DC的延长线相交于P,若PB·PA=PC·PD,则A、B、C、D四点共圆。1:如图,在圆内接四边形ABCD中,∠A=60°,∠B=90°,AB=2,CD=1,求BC的长2:如图,正方形ABCD的面积为5,E、F分别为CD、DA的中点,BE、CF相交于P,求AP的长3:如图,四边形ABCD内接于⊙O,CB=CD=4,AC与BD相交于E,AE=6,线段BE和DE的长都是正整数,求BD的长4:如图,OQ⊥AB,O为△ABC外接圆的圆心,F为直线OQ与AB的交点,BC与OQ交于P点,A、C、Q三点共线,求证:OA2=OP·OQ5:如图,P是⊙O外一点,PA与⊙O切于点A,PBC是⊙O的割线,AD⊥PO于D,求证:PB:BD=PC:CD6:如图,直线AB、AC与⊙O分别相切于B、C两点,P为圆上一点,P到AB、AC的距离分别为6cm、4cm,求P到BC的距离7:在半⊙O中,AB为直径,直线CD交半圆于C、D,交AB延长线于M(MB