AC/DS转座Ac/Ds系统是玉米转座子系统之一。Ac是自主控制因子(autonomouselement),或称激活因子,长4563bp,含有一个转座酶基因和一段与转座酶的近末端重复区域邻接的、短的不完整的反向重复序列。Ac缺失后能形成不同形式的Ds。Ds-a和Ac相似,只缺失了部分转座酶基因。这点可解释Ds自身不能发生转座的原因。Ds-b的缺失片段较长,仅保留了转座酶基因的一个小片段。Ds-c仅剩有Ac因子中反向重复序列和与转座酶结合的近末端重复区域。这些区域和片段都是Ds-c在Ac指导下转座所必须的靶位点。Ac能自主转座,并形成不稳定的基因突变,但不使染色体断裂,它能使Ds因子活化、转座,并通过Ds控制结构基因的表达,有剂量效应,当Ac剂量增加时,相关的遗传效应延迟发生。Ds是非自主因子(nonautonomouselement),又称解离因子,是与Ac属于同一家族的控制因子,Ds是由Ac因子中间序列的缺失而形成的,从而失去转座酶功能。当Ac因子存在时,能活化Ds,使其在基因组内转座或插入结构基因之内,导致基因失活或改变结构基因的表达水平,也可使染色体特定部位断裂,引起缺失或重组。玉米Ds的存在能抑制邻近基因的表达。Ac-Ds的转座通过非复制型机制发生,且总是转移到邻近的位置,当插入新靶位点后,原来位置上即失去Ds因子,结果可造成染色体断裂或重排,由此可引起显性基因丢失,隐性基因表达。(小结)Ac是自主控制因子,Ds是非自主因子,Ac因子能自主转座并形成不稳定的基因突变,但不使染色体断裂,它能使Ds因子活化、转座,并通过Ds因子控制结构基因表达。Ac因子中间缺失后能形成不同形式的Ds因子,无转座酶功能。Ac因子能活化Ds因子,使其在基因组内转座或插入结构基因内导致基因失活或改变基因的表达水平,也可使染色体特定部位断裂,引起缺失或重组。Ds因子必须由Ac提供转座酶才能转座,Ds因子或多或少缺失Ac因子中的部分片段。所有的Ds因子要实现转座,必须由一对IR和与其比邻的一段短的可被Ac转座酶识别的序列。Ac-Ds的转座通过非复制型机制发生,且总是转移到邻近的位置当插入新靶位点后,原来位置上即失去Ds因子,结果可造成染色体断裂或重排,由此可引起显性基因丢失,隐性基因表达。非编码RNA(siRNA和miRNA的产生过程、相同点、不同点)小的干涉RNA(smallinterferingRNA;siRNA)和微小RNA(microRNA;miRNA)是两种序列特异性地转录后基因表达的调节因子,是小RNA的最主要组成部分,它们的相关性密切,既具有相似性,又具有差异性。对小RNA的深入研究将使我们更深一步了解生命的奥秘。本文主要介绍这两种小RNA分子及其作用机理。siRNA介绍RNA干涉(RNAi)在实验室中是一种强大的实验工具,通过这种方式,利用具有同源性的双链RNA(dsRNA)诱导序列特异的目标基因的沉默,迅速阻断基因活性。小的干涉RNA(siRNA)是在RNA干涉过程中人工体外合成的小片段RNA,由约20个碱基对组成,包括5个磷酸盐,2个核苷和3个悬臂。SiRNA在RNA沉默通道中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素。1999年,Hamilton等在植物基因沉默的研究中首次发现21~25nt的dsRNA的出现对转基因导致基因沉默十分重要,而在转基因正确表达的植株中则未出现。随后,Hammond等进行的细胞提取物核酸酶活性实验证明了小分子RNA在RNAi中的作用,这些小分子RNA就是由dsRNA形成的siRNA。siRNA的3′-末端2-nt的突出对靶点识别的特异性起一定的作用,可将其限定在第一个碱基对相邻的不成对碱基的位置。两个研究小组以数以千计的人类和老鼠基因为目标创建RNAi库的进展,科学进展已清晰地表明:在哺乳动物中利用小的干涉RNA和短发夹RNA(shorthairpinRNAs,shRNA)来进行RNA干涉以使基因沉默已经成为强大而有力的生物工具。例如,在基因操作较困难的神经元中,也有成功进行RNAi的报道。Krichevsky等将化学合成的21ntsiRNA通过阳离子脂类转染试剂导入原代培养的大鼠神经元,显著抑制内源靶基因和转染基因的表达。抑制神经元NO合成酶表达能有效降低疼痛,在Korneev的实验中设计的双链RNA成功地抑制了中枢神经系统NO合成酶表达,获得RNA干扰的成功。RNAi能在极低浓度(nmol范围)siRNA存在下显示出特殊有效性。miR...