1/10微分中值定理与导数应用复习题一、选择题1.下列函数在区间1,e内满足拉格朗日定理条件的是()(A)y=ln(lnx)(B)y=ln(2x)(C)y=lnx(D)y=1lnx有三个实根有两个实根有唯一实根无实根内,在方程)()()()()()10(013.23DCBAxx之值为则常数处有极值在已知2,0)(3,0)(1,1)(1,2)()(,,21)(.323baDbaCbaBbaAbaxbxaxxxf4.点(0,1)是cbxaxy23的拐点,则()(A)1,3,1cba(B)a为任意值,1,0cb(C)cba,0,1为任意值(D)ba,为任意值,1c5.极限sinlimsinxxxxx=();(A)1(B)0(C)-1(D)不存在6.函数2()1xfxx()(A)在,上单调减少(B)在,上单调增加(C)在1,1内单调减少(D)在1,1内单调增加)1()()1()()1()1()()()()()1ln(.72,仅为,仅为,,,的向下凸的区间是曲线DCBAxy8.0x是函数4xy的()(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点2/1001)(0)(0)(00)()(ln.9xyDxCyBxyAxxy及而无水平渐近线而无垂直渐近线及的渐近线是曲线10.当x>0时,xe与1+x的大小关系是()(A)xe>1+x(B)xe<1+x(C)xe1+x(D)xe1+x1.C2.B3.C4.B5.A6.C7.A8.D9.A10.A二填空题不满足其原因是由于论上不具有罗尔定理的结在函数)(,]1,1[1)(.132xfxxf__________________________罗尔定理的一个条件;.2.在中的满足拉格朗日中值定理上,函数21)(]3,1[xxf._______3.),3)(2)(1()(xxxxxf则方程0)(xf有__________个实根,分别位于区间______________________________内.4.____________coslim202的值等于xxexx5..____________lim2xxexx6.____________________的严格递减区间是xxy._________________63)(.723的极大值为xxxf_____________20cos2.8上的最大值为,在区间函数xxy___________1ln.92上的一段凸性的是,在区间关于曲线eexxy________________.102的拐点是曲线xey________________)()20(sinln.11处的曲率为,在点曲线yxxxy12.曲线11xey的渐近线的方程为_______________;3/101.内可导在)1,1()(xf2.13.3,[0,1],[1,2],[2,3]4.235.06.)(410写开区间也可以,7.f()068.369.向上凸10.),1(2e11.xsin12.0,0yx三、计算题xxeexxxcos13lim.120求极限解原式:limsinxxxeex0223limcosxxxeex0243.)cos1ln(lnlim.20xxx求极限解原式limsincosxxxx011limcossinxxxx01limsinsincosxxxxx0limcoscoscossinxxxxxx012备注:或原式limsinsinxxxx011limcossinxxxx014/10limxxx0221212xxx2tan)1(lim.31求极限解原式limcotxxx112limcscxx121222)1(cotlim.40xxx解:lim(cot)xxx01limcossinsinxxxxxx0limcossinxxxxx02limsinxxxx02.lim.5)1ln(10xexx求极限)1ln(lnlimln00)1ln(1limxxxeexxxee解:原式11lim)1ln(lnlim00xxxxxeexexlimxxxexe011故原式ee15/106、.)(coslim10xxx求极限xxxxxxeecoslnlim)ln(cos001lim:原式解xxxxxxx21cossinlimcoslnlim0012故原式e12xxxxcos110sinlim.7求极限xxxxxIneexxxxxInxxxInxxxxcos1sinlnlimsinlimlimlim:0cos110sinlim0sin0cos110cos11则原式解limsincossinsinxxxxxxxx02limcossinsinlimcossinxxxxxxxxxxx0203limcossincosxxxxxx02313的单调区间求函数)1(4)3(.82xxy解:)1()1(,及,定义域6/102)1(4)3)(1(xxxy令得,yxx01312x)1,(-1(-1,1)(1,3)3),3(y/+0--0+y↑↓↓↑311131,,,单调减区间为,,,故函数的单调增区间为的极值求函数34.9xxy定义域,()34)4(3)3(432xxxxy求得驻点:导数不存在点x4x(,)33(3,4)4(,)4y’-0+不存在+y↓↑↑313)3(3y函数仅有极小值的渐近线求曲线32)1(2.10xxy2)1(2lim)21(lim21)1(2limlim1)1(2lim)1(2232223123xxxxybxxxyaxxxxxyxxxxx是所求的一铅直渐近线解:1)1(2)2(lim2233xxxxxx7/10处的曲率与曲率半径。,在点求曲线)14(tan.11xy解:2)2(sec242xyxy4tansec242xyxxy554)41(4)1(232324yykx4551Rk12.求函数yln(x21)图形的拐点及凹或凸的区间解:122xxy22222)1()1)(1(2)1(22)1(2xxxxxxxy令y0得x11x21列表得可见曲线在(1)和[()内是向凸上的在(11)内是向下凸的拐点为(1ln2)和(1ln2)上的最值,在求2301434)(.133xxxf解:fxx()4420,0)(xxf得驻点令211234)827(34)23(351434)1(1)0(fff故的最大值为fxf()()01的最小值为fxf()()15314问a、b为何值时点(13)为曲线yax3bx2的拐点?解y3ax22bx...