电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数值线性代数课设资料VIP免费

数值线性代数课设资料_第1页
1/22
数值线性代数课设资料_第2页
2/22
数值线性代数课设资料_第3页
3/22
数值线性代数课程设计报告姓名:陶英学号:081410124任课教师:杨熙南京航空航天大学2016年6月22日求解线性方程组的三种迭代法及其结果比较摘要当今的环境下,数值计算越来越依赖于计算机。大规模科学计算和工程技术中许多问题的解决,最终归结为大型稀疏线性方程组的求解,其求解时间在整个问题求解时间中占有很大的比重,有的甚至达到80%。由于现今科学研究和大型项目中各种复杂的可以对计算精度和计算速度的要求越来越高。因此,作为大规模科学计算基础的线性代数方程组的高效数值求解引起了人们的普遍关注。这种方程组的求解一般采用迭代法。关于迭代法,是有很多种解决公式的:Jacobi,G-S和超松弛迭代法。这三种方法的原理大致相同,Jacobi需要给定初向量,G-S则需要给定初值,超松弛法是对Guass-Seidel迭代法的加权平均改造。而本文则是对大型稀疏线性方程组迭代求解与三种迭代法(Jacobi,Gauss-Seidel和超松弛迭代法)的收敛速度与精确解的误差比较做出研究。关键词:Jacobi迭代法;Gauss-Seidel迭代法;SOR迭代法;线性方程组1方法与理论的叙述1.1迭代法简介1.Jacobi迭代法:对于非奇异线性方程组Ax=b,令A=D-L-U,其中则原方程组可改写为:(2.2)其中给定初始向量:由(2.2)可以构造迭代公式:其分量形式为:2.Guass-Seidel迭代法:类似于Jacobi迭代法,给定初值:令则得到Guass-Seidel公式:其分量形式为:3.超松弛迭代法(SOR迭代法):SOR迭代法是对Guass-Seidel迭代法的加权平均改造,即为Guass-Seidel迭代解,即它的分量形式为:其中ω称为松弛因子,当ω>1时称为超松弛;当ω<1时叫低松弛;ω=1时就是Guass-Seidel迭代。上述三种经典迭代法收敛的充分必要条件是迭代矩阵谱半径小于1。谱半径不易求解,而在一定条件下,通过系数矩阵A的性质可判断迭代法的收敛性。定理1:若系数矩阵A是严格对角占优或不可约对角占优,则Jacobi迭代法和Gauss-Seidel迭代法均收敛。定理2:(1)SOR迭代法收敛的必要条件是0>clear>>x=linspace(0,1);truy=(1-0.5)/(1-exp(-1/1))*(1-exp(-x./1))+x.*0.5;figure;plot(x,truy,'g','LineWidth',1.5);holdon;Grid图:2.3三种迭代法Jacobi法:代码见附录Eps=1结果:迭代次数k:22273结果与精确解的比较图(绿色粗线是精确解,黑色细线是迭代结果)Eps=0.1结果:迭代次数k:8753结果与精确解的比较图(绿色粗线是精确解,黑色细线是迭代结果)Eps=0.01结果:迭代次数k:661结...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数值线性代数课设资料

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部