电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数形结合思想方法在教学中的作用VIP免费

数形结合思想方法在教学中的作用_第1页
1/4
数形结合思想方法在教学中的作用_第2页
2/4
数形结合思想方法在教学中的作用_第3页
3/4
数形结合思想方法在教学中的作用第2页数形结合思想方法在教学中的作用对于数形结合思想方法的作用,笔者认为数形结合思想方法的作用主要表现在以下几个方面:(1)有助于学生形成和谐、完整的数学概念。数学概念是数学逻辑的起点,是学生认知的基础,是学生数学思维的核心,但是由于数学中的概念往往是高度抽象的,给人一种单调、乏味、枯燥、难懂的错觉。利用数形结合的思想可以帮助学生理解数学概念。①化抽象为具体,有利于数学概念的理解、记忆。这一点主要表现在以下几个方面,第一、利用数形结合,容易揭示数学概念的来龙去脉,学生易于感知和接受。第二、利用数形结合有利于学生对知识本质的理解。第三、利用数形结合,为概念赋予图形信息,帮助学生利用图形信息来理解记忆概念及对相关性质进行应用。②发展和优化学生的数学认知结构。数学认知结构是学习者头脑中的数学知识结构,即数学知识结构通过内化在学习者头脑中所形成的观念的内容和组织。数形结合可以使学生的知识整体化、系统化,便于学生在各种知识背景下提取有用的信息,且能从“数”与“形”两个维度去考虑解决问题。主要体现在下面几个方面:第一、数形结合加强了知识与知识之间的相互联系与转化,构建了有效的知识网络,优化了学生的数学认知结构。第二、通过数形结合使学生原有的认第4页维的发展。②有助于培养学生的直觉思维。运用数形结合解题能直接揭示问题的本质,直观地看到问题的结果,只需稍加计算或推导,就能得到确切的答案,因此许多数学问题的解答都是先从几何形象的直觉感知中得到某种猜想、预感,然后再进行逻辑推理和证明,进而使问题得以解决。③有助于培养学生的抽象思维能力。第一、数形结合表面上看是代数与几何之间的结合。第二、我们知道任何的学习迁移都是通过概括这一思维过程来实现的。数形结合在应用的过程中,常常根据数量关系与图形特征之间的联系和规律,可以把一个形的问题转化迁移到与之相应的数的问题,反之数的问题转化迁移到与之相应的形的问题。(4)利用数形结合,唤起学生对数学美的追求。数学本身就是一门美的科学,数学上的对称美,轮换美,简洁美、和谐美、奇异美等形式在图形上的体现更为直观、更为动人。利用数形结合能培养学生审美情趣,经受审美体验,提高审美意识和审美能力,以激励起学生学好数学的激情,动力和追求解题的艺术美,促进人的素质全面提高。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数形结合思想方法在教学中的作用

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部