1995年全国高中数学联赛第一试一、选择题(每小题6分,共36分)1.设等差数列{an}满足3a8=5a13且a1>0,Sn为其前项之和,则Sn中最大的是()(A)S10(B)S11(C)S20(D)S212.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为Z1,Z2,…,Z20,则复数Z,Z,…,Z所对应的不同的点的个数是()(A)4(B)5(C)10(D)203.如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有()(A)1个(B)2个(C)50个(D)100个4.已知方程|x-2n|=k(n∈N*)在区间(2n-1,2n+1]上有两个不相等的实根,则k的取值范围是()(A)k>0(B)00,Sn为其前项之和,则Sn中最大的是()(A)S10(B)S11(C)S20(D)S21解:3(a+7d)=5(a+12d),d=-a,令an=a-a(n-1)≥0,an+1=a-an<0,得n=20.选C.2.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为Z1,Z2,…,Z20,则复数Z,Z,…,Z所对应的不同的点的个数是()(A)4(B)5(C)10(D)20解:设z1=cosθ+isinθ,则zk=z1εk-1,其中ε=cos+isin.ε20=1.ε15=-i,ε10=-1,ε5=i.∴zk1995=(cos1995θ+isin1995θ)ε1995(k-1)=(cos1995θ+isin1995θ)(-i)k-1.∴共有4个值.选A.3.如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有()(A)1个(B)2个(C)50个(D)100个解:把身高按从高到矮排为1~100号,而规定二人比较,身高较高者体重较小,则每个人都是棒小伙子.故选D.4.已知方程|x-2n|=k(n∈N*)在区间(2n-1,2n+1]上有两个不相等的实根,则k的取值范围是()(A)k>0(B)00.由图象可得,x=2n+1时,k≤1.即k≤.故选B.又解:y=(x-2n)2与线段y=k2x(2n-10.且(2n-1)2-(4n+k2)(2n-1)+4n2>0,(2n+1)2-(4n+k2)(2n+1)+4n2≥0,2n-1<2n+k2<2n+1.k≤.5.logsin1cos1,logsin1tan1,logcos1sin1,logcos1tan1的...