章末综合测评(一)集合与常用逻辑用语(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示正确的是()A.{所有实数}=RB.整数集={Z}C.∅={∅}D.1∈{有理数}D[选项A不正确,因为符号“{}”已包含“所有”“全体”的含义,因此不用再加“所有”;选项B不正确,Z表示整数集,不能加花括号;显然选项C不正确,选项D正确.]2.集合A={x|-1≤x≤2},B={x|x<1},则A∪(∁RB)=()A.{x|x>1}B.{x|x≥-1}C.{x|10D.∀x∈R,x3-x2+1≤0C[由存在量词命题的否定可得,所给命题的否定为“∀x∈R,x3-x2+1>0”.故选C.]6.“a=-1”是“函数y=ax2+2x-1与x轴只有一个交点”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件B[当a=-1时,函数y=ax2+2x-1=-x2+2x-1与x轴只有一个交点;但若函数y=ax2+2x-1与x轴只有一个交点,则a=-1或a=0,所以“a=-1”是“函数y=ax2+2x-1与x轴只有一个交点”的充分不必要条件.]7.a2>b2的一个充分条件是()A.a>bB.a<bC.a=bD.a=2,b=1D[A中,当a=0,b=-2时,a2=0,b2=4,不能推出a2>b2;B中,当a=-1,b=1时,a2=b2,不能推出a2>b2;C中,当a=b时,a2=b2,不能推出a2>b2;D中,a2=4,b2=1,能推出a2>b2,故选D.]18.下列命题中,真命题是()A.若x,y∈R且x+y>2,则x,y至少有一个大于1B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.∃x∈R,x2+2≤0A[当x=2时,2x=x2,故B错误;当a=b=0时,满足a+b=0,但=-1不成立,故C错误;∀x∈R,x2+2>0,故∃x∈R,x2+2≤0错误,故选A.]9.一元二次方程ax2+4x+3=0(a≠0)有一个正根和一个负根的充分不必要条件是()A.a<0B.a>0C.a<-1D.a>1C[方程有一个正根和一个负根时,根据韦达定理知<0,即a<0,a<-1可以推出a<0,但a<0不一定推出a<-1,故选C.]10.已知集合A={x|x>2},B={x|x<2m},且A⊆∁RB,那么m的值可以是()A.1B.2C.3D.4A[根据补集的概念,∁RB={x|x≥2m}.又 A⊆∁RB,∴2m≤2.解得m≤1,故m的值可以是1.]11.若集合A={x|2a+1≤x≤3a-5},B={x|5≤x≤16},则能使A⊆B成立的所有a组成的集合为()A.{a|2≤a≤7}B.{a|6≤a≤7}C.{a|a≤7}D.∅C[当3a-5<2a+1,即a<6时,A=∅⊆B;当3a-5≥2a+1,即a≥6时,A≠∅,要使A⊆B,需有解得2≤a≤7.综上可知,a≤7.]12.满足“闭合开关K1”是“灯泡R亮”的充要条件的电路图是()C[由题图A,闭合开关K1或者闭合开关K2都可以使灯泡R亮;反之,若要使灯泡R亮,不一定非要闭合开关K1,因此“闭合开关K1”是“灯泡R亮”的充分不必要条件.由题图B,闭合开关K1而不闭合开关K2,灯泡R不亮;反之,若要使灯泡R亮,则开关K1必须闭合.因此“闭合开关K1”是“灯泡R亮”的必要不充分条件.由题图C,闭合开关K1可使灯泡R亮;反之,若要使灯泡R亮,开关K1一定是闭合的.因此“闭合开关K1”是“灯泡R亮”的充要条件.由题图D,闭合开关K1但不闭合开关K2,灯泡R不亮;反之,灯泡R亮也可不闭合开关K1,只要闭合开关K2即可.因此“闭合开关K1”是“灯泡R亮”的既不充分也不必要条件.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设全集U=R,集合A={x|x<0},B={x|x>1},则A∪(∁UB)=________.{x|x≤1}[ B={x|x...