2016-2017学年度高一第二学期期中考试数学试题(理科)时间:120分钟满分:150分一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sinπ的值是().A.-B.-C.D.2.圆x2+y2+2x-4y=0的圆心坐标和半径分别是()A.(1,-2),5B.(-1,2),C.(-1,2),5D.(1,-2),3.对于函数y=sin(π-x),下面说法中正确的是()A函数是周期为π的奇函数B函数是周期为π的偶函数C函数是周期为2π的奇函数D函数是周期为2π的偶函数4.上,满足的x的取值范围是()ABCD5.圆O1:和圆O2:的位置关系是()A.外离B.内切C.外切D.相交6.已知点,向量,则向量()(A)(B)(C)(D)7.若角α满足sinα·cosα<0,cosα-sinα<0,则α在().A.第一象限B.第二象限C.第三象限D.第四象限8.对任意向量,下列关系式中不恒成立的是()A.B.C.D.9.函数y=cosx+|cosx|x∈[0,2π]的大致图象为()10.若非零向量a,b满足|a|=|b|,且(a-b)(3a+2b),则a与b的夹角为()A、B、C、D、11.函数在区间上的最小值是()A.B.C.D.012.过点M(1,2)的直线l与圆C:(x-2)2+y2=9交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程为()A.x-2y+3=0B.x-y+1=0C.x=1D.y=1二、填空题(本题4小题,每小题5分)13.设扇形的周长为,面积为,则扇形的圆心角的弧度数是14.已知向量,,则15.已知且,则16.若实数x,y满足,则的最小值为_______三、解答题:解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)已知α是第三象限角,(1)化简;(2)若,求的值;.18.(本小题满分12分)已知是同一平面内的三个向量,其中.(1)若,且,求的坐标;(2)若,且。19、(本小题满分12分)已知平面上3个向量的模均为1,它们相互之间的夹角均为120o(1)求证:;(2)若(k∈R),求k的取值范围。20.(本小题满分12分)设函数f(x)=sin,y=f(x)图象的一条对称轴是直线x=.(1)求φ;(2)求函数y=f(x)的单调增区间.21.(本小题满分12分)已知圆C的圆心在直线x-3y=0上,且圆C与y轴相切,若圆C截直线y=x得弦长为2,求圆C的方程.22.(本小题满分12分)已知点(0,1),(3+2,0),(3-2,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.206-2017学年度高一第二学期期中考试答案(理科)一、选择题1-5CBDCD6-10ABBDA11-12CA二、填空题13、214、915、16、三、计算题17.解(1)f(α)===cosα.·········4分(2) cos=cos=-sinα,又cos=,∴sinα=-.·······························································6分又α是第三象限角,∴cosα=-=-,·····························································9分∴f(α)=-.······································································································10分18.解:(1)设=(x,y), ||=,∴,即x2+y2=20,①··········································································2分 ∥,=(1,2),∴2x-y=0,即y=2x.②·········································································3分联立①②得或∴=(2,4)或(-2,-4).······································································································5分(2) ,∴,·····································································...