湖南师大附中2014-2015学年高一上学期期末数学试卷一、选择题(每小题5分,共35分)1.(5分)已知直线l经过点A(4,1),B(6,3),则直线l的倾斜角是()A.0°B.30°C.45°D.60°2.(5分)若一个几何体的正视图,侧视图和俯视图形状相同,大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱3.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.(5分)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m⊂α,则l∥mB.若l∥α,m∥α,则l∥mC.若l⊥α,l∥m,则m⊥αD.若l⊥m,m⊂α,则l⊥α5.(5分)直线x+y﹣1=0与直线x+y+1=0的距离为()A.2B.C.D.16.(5分)将圆x2+y2﹣2x﹣4y+1=0平分的直线是()A.x+y﹣1=0B.x+y+3=0C.x﹣y+1=0D.x﹣y+3=07.(5分)如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC二、填空题(每小题5分,共15分)8.(5分)空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.9.(5分)若一个球的体积为,则它的表面积为.10.(5分)过点P(﹣3,1)且与直线2x+3y﹣5=0垂直的直线方程为.三、解答题11.(12分)如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥BD,AB=3,BC=BD=4,点E,F分别是AC,AD的中点1(1)判断直线EF与平面BCD的位置关系,并说明理由(2)求三棱锥A﹣BCD的体积.12.(12分)三角形ABC的三个顶点A(﹣3,0),B(2,1),C(﹣2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程.13.(13分)如图,正方体ABCD﹣A1B1C1D1中,E为线段DD1的中点(1)求证:AC⊥平面BDD1(2)求EA与平面BDD1所成角的正弦值.14.(13分)已知点P(0,5)及圆C:x2+y2+4x﹣12y+24=0(1)写出圆C的圆心坐标及半径;(2)若直线l过点P且被圆C截得的线段长为4,求l的方程;(3)过点P的圆C的弦的中点D的轨迹方程.四、选择题(每小题5分,共15分)15.(5分)设直线l过点(﹣2,0),且与圆x2+y2=1相切,则l的斜率是()A.±1B.C.D.16.(5分)已知0<a<1,则方程ax﹣|logax|=0的实根个数为()A.1个B.2个C.3个D.4个17.(5分)在四面体ABCD中,已知棱AC的长为,其余各棱的长都为1,则二面角A﹣CD﹣B的余弦值是()A.B.C.D.五、填空题(每小题5分,共10分)18.(5分)圆C:x2+y2=4关于直线x+2y﹣5=0对称的圆的方程为.219.(5分)一座圆形拱桥,当水面在如图所示位置时,拱桥离水面2米,水面宽12米,当水面下降1米后水面宽为米.六、解答题20.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.21.(13分)已知函数f(x)=2|x﹣m|和函数g(x)=x|x﹣m|+2m﹣8,其中m为参数,且满足m≤5.(1)若m=2,写出函数g(x)的单调区间(无需证明);(2)若方程f(x)=2|m|在x∈,使得f(x2)=g(x1)成立,求实数m的取值范围.湖南师大附中2014-2015学年高一上学期期末数学试卷参考答案与试题解析一、选择题(每小题5分,共35分)1.(5分)已知直线l经过点A(4,1),B(6,3),则直线l的倾斜角是()A.0°B.30°C.45°D.60°考点:直线的倾斜角.专题:直线与圆.分析:根据直线过点A、B,求出它的斜率,由斜率得出对应的倾斜角.解答:解:直线l经过点A(4,1),B(6,3),∴直线l的斜率是k==1,∴直线l的倾斜角是45°.故选:C.点评:本题考查了利用两点的坐标求直线的倾斜角与斜率的问题,是基础题目.2.(5分)若一个几何体的正视图,侧视图和俯视图形状相同,大小均相等,那么这个几何体不可以是()A.球B.三棱...