2015年山东省淄博市高考数学三模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z1=1﹣i,z2=1+i,则等于()A.2iB.﹣2iC.2+iD.﹣2+i2.设集合A={x|x2﹣2x﹣3<0},B={y|y=ex,x∈R},则A∩B=()A.(0,3)B.(0,2)C.(0,1)D.(1,2)3.已知函数f(x)=2sin(2x+φ)(|φ|<的图象过点,则f(x)的图象的一个对称中心是()A.B.C.D.4.下列四个结论:其中正确结论的个数是()①命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”;②命题“若x﹣sinx=0,则x=0”的逆否命题为“若x≠0,则x﹣sinx≠0”;③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;④若x>0,则x>sinx恒成立.A.1个B.2个C.3个D.4个5.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A.B.C.D.16.如图是一个算法的流程图.若输入x的值为2,则输出y的值是()A.0B.﹣1C.﹣2D.﹣37.已知函数f(x)=(x﹣1)的三个零点值分别可以作为抛物线、椭圆、双曲线的离心率,则a2+b2的取值范围是()A.上恒成立,则实数a的取值范围是()A.(﹣∞,﹣2)B.(﹣∞,0)C.(0,2)D.(﹣2,0)10.已知双曲线﹣=1(a>0,b>0)的半焦距为c,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线y2=4cx的准线被双曲线截得的弦长是be2(e为双曲线的离心率),则e的值为()A.B.C.或3D.或二、填空题:本大题共4小题,每小题5分,共25分.212.若函数f(x)=x2+2x+2a与g(x)=|x﹣1|+|x+a|有相同的最小值,则f(x)dx=.13.设、、都是单位向量且•=0,则(+)•(+)的最大值为.14.在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(Ⅰ)对任意a∈R,a*0=a;(Ⅱ)对任意Ra,b∈R,a*b=ab+(a*0)+(b*0).关于函数f(x)=(ex)*的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(﹣∞,0].其中所有正确说法的序号为.15.已知函数f(x)=,点O为坐标原点,点An(n,f(n))(n∈N*),向量是向量与的夹角,则的值为.三、解答题:本大题共6小题,共75分.16.设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.317.在四棱锥P﹣ABCD中,PA⊥平面ABCD,E是PD的中点,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,AC=AP=2.(Ⅰ)求证:PC⊥AE;(Ⅱ)求二面角A﹣CE﹣P的余弦值.18.某单位要从甲、乙、丙、丁四支门球队中选拔两支参加上级比赛,选拔赛采用单循环制(即每两个队比赛一场),并规定积分前两名的队出线,其中胜一场积3分,平一场积1分,负一场积0分.在经过三场比赛后,目前的积分状况如下:甲队积7分,乙队积1分,丙和丁队各积0分.根据以往的比赛情况统计:乙队胜的概率乙队平的概率乙队负的概率与丙队比赛与丁队比赛注:各队之间比赛结果相互独立.(Ⅰ)选拔赛结束,求乙队积4分的概率;(Ⅱ)设随机变量X为选拔赛结束后乙队的积分,求随机变量X的分布列与数学期望;(Ⅲ)在目前的积分情况下,M同学认为:乙队至少积4分才能确保出线,N同学认为:乙队至少积5分才能确保出线.你认为谁的观点对?或是两者都不对?(直接写结果,不需证明)19.表是一个由正数组成的数表,数表中各列依次成等差数列,各行依次成等比数列,且公比都相等.已知a1,1=1,a2,3=8,a3,2=6.(Ⅰ)求数列{a2,n}的通项公式;(Ⅱ)设bn=,求数列{bn}的前n和Sn.a1,1a1,2a1,3a1,4…4a2,1a2,2a2,3a2,4…a3,1a3,2a3,3a3,4…a4,1a4,2a4,3a4,4………………20.已知椭圆C:+=1(a>b>0)经过点M(﹣2,﹣1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.(Ⅰ)求椭圆C的方...