模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知全集U={1,2,3,4,5,6,7,8,9},M={1,3,5,6},N={1,2,4,7,9},则M∪(∁UN)等于()A.{3,5,8}B.{1,3,5,6,8}C.{1,3,5,8}D.{1,5,6,8}解析: ∁UN={3,5,6,8},∴M∪(∁UN)={1,3,5,6,8},故选B.答案:B3.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是()A.y=x-2B.y=x-1C.y=x2-2D.y=lox解析:因为y=x-1是奇函数,y=lox不具有奇偶性,故排除B,D,又函数y=x2-2在区间(0,+∞)上是增函数,故排除C,只有选项A符合题意.答案:A4.若a=22.5,b=lo2.5,c=,则a,b,c之间的大小关系是()A.c>b>aB.c>a>bC.a>c>bD.b>a>c解析:a=22.5>22=4,b=lo2.5
0,所以a>c>b,故选C.答案:C5.与函数y=10lg(x-1)相等的函数是()A.y=x-1B.y=|x-1|C.y=D.y=解析:y=10lg(x-1)=x-1(x>1),故选C.答案:C6.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,其图象经过点(,a),则f(x)=()A.log2xB.loxC.D.x2解析:因为函数y=f(x)的图象经过点(,a),所以函数y=ax(a>0,且a≠1)的图象经过点(a,).所以=aa,即a=,故f(x)=lox.答案:B7.若定义运算a*b为:a*b=如1*2=1,则函数f(x)=2x*2-x的值域为()A.RB.(0,1]C.(0,+∞)D.[1,+∞)解析:f(x)=2x*2-x=∴f(x)在区间(-∞,0]上是增函数,在区间(0,+∞)上是减函数,∴0f(-a),则实数a的取值范围是()A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)解析:当a>0时,-a<0,若f(a)>f(-a),则log2a>lo[-(-a)],即log2a>loa,此时a>1;当a<0时,-a>0,若f(a)>f(-a),则lo(-a)>log2(-a),此时0<-a<1,-11或x<-1.排除C,D.当x>1时,f(x)=lg(x-1)在区间(1,+∞)上为增函数.故选B.答案:B10.(2016·吉林延边州高一期末)若函数f(x)=4x-3·2x+3的值域为[1,7],则f(x)的定义域为()A.(-1,1)∪[2,4]B.(0,1)∪[2,4]C.[2,4]D.(-∞,0]∪[1,2]解析:设t=2x,则t>0,且y=t2-3t+3=. 函数f(x)=4x-3·2x+3的值域为[1,7],∴函数y=t2-3t+3在(0,+∞)上的值域为[1,7].由y=1,得t=1或t=2;由y=7,得t=4或t=-1(舍去),则01时,f(x)的递减区间是()A.B.C.D.解析:由题意知f(x+1)为奇函数,则f(-x+1)=-f(x+1).令t=-x+1,则x=1-t,f(t)=-f(2-t),即f(x)=-f(2-x).设x>1,则2-x<1. 当x<1时,f(x)=2x2-x+1,∴f(2-x)=2(2-x)2-(2-x)+1=2x2-7x+7.∴f(x)=-f(2-x)=-2x2+7x-7.∴函数图象的对称轴为x=.故所求的递减区间是.故选C.答案:C12.导学号29900146若不等式lg≥(x-1)lg3对任意的x∈(-∞,1]恒成立,则a的取值范围是()A.(-∞,0]B.(-∞,1]C.[0,+∞)D.[1,+∞)解析:由lg≥lg3(x-1),得≥3(x-1),1+2x+(1-a)3x≥3x,1+2x≥a·3x,即≥a对任意的x∈(-∞,1]恒成立.设f(x)=(x∈(-∞,1]),则f(x)min=f(1)==1,∴a≤1.答案:B二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·山东淄博高一期末)函数f(x)=的定义域为.(用区间表示)解析:要使函数有意义,须所以函数的定义域为[-2,1)∪(1,2].答案:[-2,1)∪(1,2]14.函数f(x)=lo(x2-2x-3)的单调递增区间为.解析:函数f(x)的定义域为{x|x>3或x<-1}.令t=x2-2x-3,则y=lot.因为y=lot在区间(0,+∞)上单调递减,t=x2-2x-3在区间(-∞,-1)上单调递减,在区间(3,+∞)上单调递增,由复合函数的单调性可知函数的单调递增区间为(-∞,-1).答案:(-∞,-1)15.若关于x的方程|x2-1|=a有2个不相等的实数解,则实数a的取值集合是.解析:构造函数y1=|x2-1|,y2=a,画出函数的图形,如图所示.由图可得关于x的方程|x2-1|=a有2个不相等的实数解时,a=0或a>1.答案:{0}∪(1,+∞)16.已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x+4)=f(x),且x∈(-1,0)时,f(x)=2x+,则f(log220)=.解析:由log224