2015-2016学年辽宁师大附中高一(上)10月月考数学试卷一、选择题(每题5分)1.设集合A={x|x+1>0},B={x|x﹣2<0}.则图中阴影部分表示的集合为()A.{x|x>﹣1}B.{x|x≥2}C.{x|x>2或x<﹣1}D.{x|﹣1<x<2}2.若a、b为实数,集合M={,1},N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b为()A.0B.1C.﹣1D.±13.在R上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x﹣b)>0的解集是(2,3),则a+b的值为()A.1B.2C.4D.84.己知,则m等于()A.B.C.D.5.如果偶函数f(x)在,则y=f(2x﹣1)的定义域()A.B.C.D.7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣2,1)C.(﹣1,2)D.(﹣∞,﹣2)∪(1,+∞)18.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(每题5分)9.集合A={x|(a﹣1)x2+3x﹣2=0}有且仅有两个子集,则a=__________.10.已知f(x)=ax5+bx3+cx+1(a,b,c都不为零),若f(3)=11,则f(﹣3)=__________.11.若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是__________.12.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|﹣1,那么x<0时,f(x)=__________.三.解答题13.已知集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∩B={﹣3},A∪B={﹣3,1,4},求实数a,b,c的值.14.已知函数f(x)=|x﹣1|+|x+1|(x∈R)(1)证明:函数f(x)是偶函数;(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.215.已知定义在R+上的函数f(x)同时满足下列三个条件:①f(3)=﹣1;②对任意x、y∈R+都有f(xy)=f(x)+f(y);③x>1时,f(x)<0.(1)求f(9)、的值;(2)证明:函数f(x)在R+上为减函数;(3)解关于x的不等式f(6x)<f(x﹣1)﹣2.32015-2016学年辽宁师大附中高一(上)10月月考数学试卷一、选择题(每题5分)1.设集合A={x|x+1>0},B={x|x﹣2<0}.则图中阴影部分表示的集合为()A.{x|x>﹣1}B.{x|x≥2}C.{x|x>2或x<﹣1}D.{x|﹣1<x<2}【考点】Venn图表达集合的关系及运算.【专题】计算题;数形结合.【分析】先化简两个集合,再根据图形得出阴影部分对应的集合是(CRB)∩A,即可求出阴影部分的集合【解答】解:由题意A={x|x+1>0}={x|x>﹣1},B={x|x﹣2<0}={x|x<2}.又由图得,阴影部分对应的集合是(CRB)∩A,∴阴影部分表示的集合为{x|x≥2}故选B【点评】本题考查Venn图表达集合的关系及运,解题的关键是根据图形得出阴影部分的集合表示,从而计算出集合.2.若a、b为实数,集合M={,1},N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b为()A.0B.1C.﹣1D.±1【考点】映射.【专题】计算题.【分析】由于映射把集合M中的元素x映射到集合N中仍为x,而M和N中都只有2个元素,故M=N,故有=0且a=1,由此求得a和b的值,即可得到a+b的值.4【解答】解:由于映射把集合M中的元素x映射到集合N中仍为x,而M和N中都只有2个元素,故M=N,∴=0且a=1.∴b=0,a=1,∴a+b=1+0=1.故选B.【点评】本题主要考查映射的定义,判断M=N,是解题的关键,属于基础题.3.在R上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x﹣b)>0的解集是(2,3),则a+b的值为()A.1B.2C.4D.8【考点】一元二次不等式的解法.【专题】新定义.【分析】根据定义,利用一元二次不等式的解法求不等式的解集.【解答】解: x⊗y=x(1﹣y),∴(x﹣a)⊗(x﹣b)>0得(x﹣a)>0,即(x﹣a)(x﹣b﹣1)<0, 不等式(x﹣a)⊗(x﹣b)>0的解集是(2,3),∴x=2,和x=3是方程(x﹣a)(x﹣b﹣1)=0的根,即x1=a或x2=1+b,∴x1+x2=a+b+1=2+3,∴a+b=4,故选:C....