2015-2016学年江西省南昌三中高三(上)第三次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于()A.M∪NB.M∩NC.(∁UM)∪(∁UN)D.(∁UM)∩(∁UN)2.设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2﹣Sn=36,则n=()A.5B.6C.7D.84.已知向量,若,则k等于()A.6B.﹣6C.12D.﹣125.设函数y=acosx+b(a、b为常数)的最大值是1,最小值是﹣7,那么acosx+bsinx的最大值是()A.1B.4C.5D.76.如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.7.已知sin(π+θ)+cos(+θ)=﹣2cos(2π﹣θ),则sinθcosθ﹣cos2θ=()A.B.﹣C.D.8.△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1B.⊥C.=1D.(4+)⊥9.函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)10.已知函数的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),记分别以m,n为横、纵坐标的点P(m,n)表示的平面区域为D,若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为()A.(1,3]B.(1,3)C.(3,+∞)D.[3,+∞)11.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.已知数列{an}满足an=nkn(n∈N*,0<k<1)下面说法正确的是()①当k=时,数列{an}为递减数列;②当<k<1时,数列{an}不一定有最大项;③当0<k<时,数列{an}为递减数列;④当为正整数时,数列{an}必有两项相等的最大项.A.①②B.②④C.③④D.②③二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.复数z=的共轭复数是.14.已知||=2,||=6,与的夹角为,则在上的投影为.15.设f(x)=ax﹣b,其中a,b为实数,f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f7(x)=128x+381,则a+b=.16.已知函数,则f(x)的最小值为.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.设函数f(x)=﹣sin2ωx﹣sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求f(x)在区间[]上的最大值和最小值.18.数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求{an}的通项公式.19.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.20.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN⊥平面C1B1N;(2)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;(3)设M为AB中点,在BC边上求一点P,使MP∥平面CNB1,求的值.21.已知函数f(x)=ax﹣2﹣1(a>0且a≠1).(1)求函数f(x)的定义域、值域;(2)求实数a的取值范围,使得函数f(x)满足:当定义域为[1,+∞)时,f(x)≥0恒成立.22.已知函数f(x)=ln(x+1)+ax2﹣x,a∈R.(Ⅰ)当a=时,求函数y=f(x)的极值;(Ⅱ)若对任意实数b∈(1,2),当x∈(﹣1,b]时,函数f(x)的最大值为f(b),求a...