高三上学期期中数学试题题号一二三总分得分评卷人得分一、选择题本大题共12道小题。1.等比数列{an}的各项均为正数,且a3a8+a5a6=18,则=()A.12B.10C.8D.2+log352.将函数的图象向右平移θ(θ>0)个单位长度后,所得到的图象关于y轴对称,则θ的最小值是()A.B.C.D.3.下列四个结论中:正确结论的个数是①若x∈R,则是的充分不必要条件;②命题“若x﹣sinx=0,则x=0”的逆命题为“若x≠0,则x﹣sinx≠0”;③若向量满足,则恒成立;()A.1个B.2个C.3个D.0个4.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(﹣x)≠f(x)B.∀x∈R,f(﹣x)≠﹣f(x)C.∃x0∈R,f(﹣x0)≠f(x0)D.∃x0∈R,f(﹣x0)≠﹣f(x0)5.如图所示,在平面四边形ABCD中,AB=1,BC=2,△ACD为正三角形,则△BCD面积的最大值为()A.2B.C.D.6.已知向量和,若,则=()A.64B.8C.5D.7.如图是函数图象的一部分,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有,则()A.f(x)在上是增函数B.f(x)在上是减函数C.f(x)在上是增函数D.f(x)在上是减函数8.设函数f(x)=xsinx+cosx的图象在点(t,f(t))处切线的斜率为k,则函数k=g(t)的部分图象为()A.B.C.D.9.对于函数y=g(x),部分x与y的对应关系如下表:x123456y247518数列{xn}满足:x1=2,且对于任意n∈N*,点(xn,xn+1)都在函数y=g(x)的图象上,则x1+x2+…+x2015=()A.4054B.5046C.5075D.604710.设集合A={x|y=lg(x﹣1)},集合B={y|y=﹣x2+2},则A∩B等于()A.(1,2)B.(1,2]C.[1,2)D.[1,2]11.如图,已知ABCDEF是边长为1的正六边形,则的值为()A.B.C.D.12.已知函数g(x)满足g(x)=g′(1)ex﹣1﹣g(0)x+,且存在实数x0使得不等式2m﹣1≥g(x0)成立,则m的取值范围为()A.(﹣∞,2]B.(﹣∞,3]C.[1,+∞)D.[0,+∞)评卷人得分一、填空题本大题共4道小题。13.某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚144元,那么每台彩电原价是元.14.函数的图象与x轴所围成的封闭图形面积为.15.若幂函数f(x)过点(2,8),则满足不等式f(a﹣3)>f(1﹣a)的实数a的取值范围是.16.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),an=(n∈N*),bn=(n∈N*),考查下列结论:①f(1)=1;②f(x)为奇函数;③数列{an}为等差数列;④数列{bn}为等比数列.以上命题正确的是.评卷人得分二、解答题本大题共7道小题。17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,且,(Ⅰ)求△ABC的面积.(Ⅱ)已知等差数列{an}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{}的前n项和Sn.18.已知函数f(x)=﹣+(a﹣1)x+lnx.(Ⅰ)若a>﹣1,求函数f(x)的单调区间;(Ⅱ)若a>1,求证:(2a﹣1)f(x)<3ea﹣3.19.设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn﹣1=5Sn(n≥2),Tn是数列{log2an}的前n项和.(1)求数列{an}的通项公式;(2)求满足的最大正整数n的值.20.在平面直角坐标系xOy中,曲线C的方程为x2﹣2x+y2=0,以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=(ρ∈R).(Ⅰ)写出C的极坐标方程,并求l与C的交点M,N的极坐标;(Ⅱ)设P是椭圆+y2=1上的动点,求△PMN面积的最大值.21.设函数f(x)=x﹣|x+2|﹣|x﹣3|﹣m(m∈R).(Ⅰ)当m=﹣4时,求函数f(x)的最大值;(Ⅱ)若存在x0∈R,使得f(x0)≥﹣4,求实数m的取值范围.22.设p:关于x的不等式ax>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.23.已知向量,向量,函数.(Ⅰ)求f(x)单调递减区间;(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,,c=4,且f(A)恰是f(x)在上的最大值,求A,b,和△ABC的面积S.试卷答案1.B【考点】等比数列的通项公式;对数的运算性质.【分析】由题意可得a5a6=9,由等比数列的性质和对数的运算可得原式=log3(a5a6)5,化简...